OpenAI和DeepMind的研究人员使用的新算法从人类反馈中学习,他们希望这样做能使人工智能更安全。
两家公司均为强化学习的专家,强化学习是机器学习的一个领域,其基本思想是,如果代理在特定的环境里采取正确的行动完成了任务就给予奖励。该目标是通过一种算法来指定的,代理经过程序后就会追逐奖励,例如游戏中的获胜点。
强化学习在训练机器如何玩如Doom或Pong等游戏或通过模拟驾驶自主驾驶汽车等案例中取得了成功。强化学习是探索代理行为的一个有效的方法,但如果硬编码算法错了或产生不良影响的话,这种方法可能也有危险。
arXiv上发表的一篇论文描述了一种有助于防止此类问题的新方法。首先,代理在其环境中执行随机动作。预测的奖励则是基于人类的判断,而且奖励被反馈到强化学习算法中,以改变代理的行为。
系统在人类指导下制定最佳行动及学习目标
研究人员将这种算法用于训练一个弯曲的灯柱往后仰。代理的两个视频然后再交给人观看,观看者选择哪一个的后仰动作更佳一些。
经过一段时间后,代理就逐渐学习了如何根据奖励函数最有效地解释人类的判断来学习目标。强化学习算法用于指导代理的行为,并可以持续在人类的批准下进行改进。
网上可找到相关的视频。(https://www.youtube.com/watch?v=oC7Cw3fu3gU)
人类评估者花掉的时间不足一个小时。但要完成做饭或发送电子邮件等更复杂的任务就会需要更多的人类反馈,从财务的角度来看则是昂贵的。
文章的作者之一达里奥·阿莫德(Dario Amodei)是OpenAI的一名研究人员,他表示,未来研究的重点会放在减少监督方面。
他告诉记者,“泛泛而言,名为半监督学习的技术在这一块可能有帮助。另一种可能性是提供更信息密集的反馈形式,如语言,或是让人类在屏幕上具体指出表示良好行为的部分。更多的信息密集反馈可能会让人类在更短的时间内更多地与算法进行沟通。“
上述研究人员在其他模拟机器人任务和Atari游戏里测试了他们的算法,结果显示机器有时可以实现超人式的性能。但这在很大程度上取决于人类评估者的判断。
OpenAI在一篇博文里表示,“我们算法的性能只能和人类评估者对于什么是正确行为的直觉一样好,所以,如果人类对一个任务没有很好的把握,那他们可能提供不了太多有用的反馈。”
阿莫德表示,目前的结果仅局限于非常简单的环境。但这种方法大有可能对有些很难学习的任务有用,这些任务的奖励功能很难量化,例如驾驶、组织事件、写作或技术支持的提供。
好文章,需要你的鼓励
Anthropic发布了面向成本敏感用户的Claude Haiku 4.5大语言模型,定价为每百万输入令牌1美元,输出令牌5美元,比旗舰版Sonnet 4.5便宜三倍。该模型采用混合推理架构,可根据需求调整计算资源,支持多模态输入最多20万令牌。在八项基准测试中,性能仅比Sonnet 4.5低不到10%,但在编程和数学任务上超越了前代Sonnet 4。模型响应速度比Sonnet 4快两倍以上,适用于客服聊天机器人等低延迟应用场景。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
英国初创公司Nscale将为微软建设四个AI数据中心,总计部署约20万个GPU,合同价值高达240亿美元。首个数据中心将于明年在葡萄牙开建,配备1.26万个GPU。德州数据中心规模最大,将部署10.4万个GPU,容量从240兆瓦扩展至1.2吉瓦。所有设施将采用英伟达最新Blackwell Ultra显卡。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。