至顶网软件频道消息:就如移动设备从根本上改变了用户的互动方式,语音交互界面也有着同样的潜力。最新的Adobe Analytics数据显示,随着新一代产品不断地推进着创新和用户需求,语音设备的网络销量同比去年增长了39%。
7月3日,Adobe宣布推出Adobe Analytics Cloud语音分析新功能,该功能能够帮助品牌交付更为个性化的用户体验,并通过基于语音的交互界面提高品牌忠诚度。在Adobe Sensei的人工智能与机器学习功能的帮助下,通过对语音数据的深度分析,品牌既能加深对客户的了解并给出相应的建议,也能将传统的、复杂的人工分析自动化。品牌能够根据分析结果更快地采取行动,从而在交付卓越用户体验的同时,激活诸如电子邮箱和广告等其他接触点。
Adobe Analytics Cloud副总裁Bill Ingram表示:“ 正如我们在移动和视频方面看到的这样,当前科技领域中最重要的趋势之一就是用户能够越来越快地适应与内容互动的新方式。我们预计语音设备也将拥有类似的发展轨迹。Adobe已经重塑了网络、移动和用户分析,而现在,Adobe Analytics Cloud 可以使各种规模的品牌都能将语音数据的分析洞察应用于用户体验的整个旅程。”
通过Adobe Analytics Cloud,企业能够捕捉并分析所有包括Amazon Alexa、Apple Siri、 Google Assistant、Microsoft Cortana和Samsung Bixby在内的主流平台上的语音数据。这项新功能既能捕捉用户命令(如“给我播放一首歌”),也能捕捉特定的参数(如“甲壳虫乐队的歌”),解决了分析语音互动中的复杂性问题。新功能还提供了额外取值点,包括使用频率以及语音请求出现后的响应措施等。
Adobe Sensei使得团队能够专心于打造提高语音体验的客户互动,例如提供更相关的内容。举例来说,一家连锁酒店可以通过客户忠诚计划马上识别客户,并在此基础上为旅客提供奖励积分的使用建议,如购买现场演出门票或用于下一次房间预订。酒店甚至可以在最忠实客户入住之前发送促销信息,客户只需与语音设备对话即可解锁特别优惠。
声音分析数据与Adobe Marketing Cloud和Adobe Advertising Cloud 的结合,能够确保用户的每次数字互动都有连续性和相关性。例如,通过使用Adobe Target,来自语音设备的洞察信息可以自动地在其他渠道上被利用,同时使用机器学习和预测算法可以针对用户提出的问题给出个性化的回应。用一位使用Amazon Echo的旅行应用的美食爱好者举例来说,她能通过语音、移动应用或联网车体验获取到当地最受欢迎的餐厅信息。
好文章,需要你的鼓励
Fractal AI Research实验室开发了Fathom-DeepResearch智能搜索系统,该系统由两个4B参数模型组成,能够进行20多轮深度网络搜索并生成结构化报告。研究团队创新了DUETQA数据集、RAPO训练方法和认知行为奖励机制,解决了AI搜索中的浅层化、重复性和缺乏综合能力等问题,在多项基准测试中显著超越现有开源系统,为AI助手向专业研究工具转变奠定了基础。
AI正在革命性地改变心脏疾病治疗领域。从设计微创心脏瓣膜手术到预防原理定位,机器学习和神经网络的洞察力推动了巨大进步,甚至可以构建新型移植解剖结构。数字孪生技术为个性化心血管护理提供持续预测管理。哈佛干细胞研究所的研究人员利用纳米材料和类似棉花糖机的设备,能在10分钟内制造心脏瓣膜,相比传统3周制造时间大幅缩短。这些突破性技术为每年4万名先天性心脏畸形儿童带来新希望。
快手科技与清华大学合作发现当前AI语言模型训练中存在严重的权重分配不平衡问题,提出了非对称重要性采样策略优化(ASPO)方法。该方法通过翻转正面样本的重要性权重,让模型把更多注意力放在需要改进的部分而非已经表现良好的部分,显著提升了数学推理和编程任务的性能,并改善了训练稳定性。