至顶网软件频道消息:本世纪初的几次炭疽病菌袭击使公众害怕来历不明的白色粉末,但不幸的是,识别炭疽需要专家知识和时间。Korea Advanced Institute of Science and Technology(韩国科学技术高级研究所)的一个科学家团队可能已经使用人工智能找到了解决这个问题的方法,他们表示这种方法可以比人类更快地发现炭疽。
炭疽是由炭疽杆菌引起的感染,甚至会危及生命,通常是在家畜中发现。由于细菌的可用性和耐用性,美国和苏联在冷战期间都制造了炭疽的生化武器。
炭疽芽孢可以在恶劣的条件下长时间存活,这个特点使其易于运输和递送。Centers for Disease Control and Prevention(疾病控制和预防中心)表示,炭疽是生物恐怖袭击中最有可能使用的生物制剂之一。
炭疽病如果在感染的早期获得治疗,是可以被治愈的,但症状有时候在接触后几天甚至几个月内都不会出现,这就是为什么尽快识别出孢子至关重要。来自KAIST的研究团队表示,他们的人工智能不仅可以准确地发现炭疽病菌,而且还是在不到一秒的时间内完成它。
该团队在《Science Advances》杂志上发表了一篇论文,介绍了他们是如何通过将深度学习和计算机视觉与创建微生物三维扫描的极其强大的显微镜相结合以创造人工智能的。他们专门对人工智能进行了培训,以识别不同类型的炭疽杆菌,但他们希望同样的深度学习方法也可以应用于其他微生物。
虽然人工智能得到了有希望的结果,但仍然不太完美。在完成确定炭疽病菌的任务时,人工智能可以实现96%的准确度,这个团队称之为“非常准确”。作为测试,他们还试图训练同样的人工智能来识别李斯特菌,准确度达到85%。考虑到人工智能并不是为了这个目的而设计的,该团队认为这个准确度“高得令人惊讶”。
研究小组在论文中表示,他们的深入学习方法可以在打击危险病原体方面迈出意义非凡的一步。
好文章,需要你的鼓励
铠侠正在测试最新的UFS v4.1嵌入式闪存芯片,专为智能手机和平板电脑设计,可提供更快的下载速度和更流畅的设备端AI应用性能。该芯片采用218层TLC 3D NAND技术,提供256GB、512GB和1TB容量选择。相比v4.0产品,随机写入性能提升约30%,随机读取性能提升35-45%,同时功耗效率改善15-20%。新标准还增加了主机发起碎片整理、增强异常处理等功能特性。
上海AI实验室团队提出创新的异步拍摄方案,仅用普通相机就能实现高速4D重建。该方法通过错开相机启动时间将有效帧率从25FPS提升至100-200FPS,并结合视频扩散模型修复稀疏视角导致的重建伪影。实验结果显示,新方法在处理快速运动场景时显著优于现有技术,为低成本高质量4D内容创作开辟新路径。
谷歌在伦敦云峰会上发布Firebase Studio更新,新增Gemini命令行界面集成、模型上下文协议支持和"代理模式"。代理模式提供三种AI协作层次:对话式"询问"模式用于头脑风暴,人机协作代理需开发者确认代码变更,以及几乎完全自主的代理模式。尽管谷歌声称已有数百万应用使用该平台,但目前仍需精心设计提示词,非工程师用户还无法直接创建成熟应用。
上海AI实验室联手复旦大学提出了POLAR方法,这是一种革命性的奖励模型训练技术。通过让AI学会识别不同策略间的差异而非死记评分标准,POLAR在多项任务上实现了显著提升,7B参数模型超越72B现有最强基线,为AI对齐问题提供了全新解决思路。