5年前,微软仍然有一些主要的服务没有运行在自己的Azure云上,从那时起,微软一直致力于改变这个现状。现在微软很快就将宣布,所有第一方服务(包括Office 365、Xbox Live和Bing服务)都将运行在Azure上。
对于包括微软在内的任何公司来说,希望将其所有云服务托管在一个通用基础设施上是有充足理由的。因为这样微软和其他公司就可以更快地开发新产品;满足特定的合规需求;利用微软Graph API等跨云基础技能;更快地进行扩展;将自身Azure托管服务用作客户案例进行展示;最后也是最重要的,省钱。
10年前微软曾承诺将Office 365迁移到Azure。与Bing和Xbox Live一样,Office 365是运行在微软自己的数据中心内的,实际上并未托管在Azure上。最近在进行询问的时候,微软承认,Office 365仍未完全运行在Azure上,但已经相当接近了。
微软Azure首席技术官Mark Russinovich在一份声明中称:“如今大多数Microsoft 365服务(包括Teams、SharePoint Online和Office Online)以及Xbox Live服务已经运行在Azure基础设施上了。 用于Exchange Online和Outlook.com的邮箱存储也正在迁移到标准Azure基础设施上。”
最近微软发布的一些博客文章中称,微软在Azure上运行所有服务,几年前并非如此,但是去年6月一篇有关Azure团队的文章中提到:“Azure是支持所有微软云服务(包括Microsoft Teams)的云平台。我们的工作负载运行在Azure虚拟机(VM)中,我们的旧服务通过Azure云服务部署,而新服务则部署在Azure Service Fabric上。”
早在2016的时候,微软进行了一个名为“CloudOptimal”的内部项目,该项目被特许用于在Azure上获得微软服务。CloudOptimal项目的任务是在Azure上迁移并运行所有第一方服务。所有新服务例如Teams、Windows Virtual Desktop和xCloud游戏服务则是从一开始就设计运行在Azure上的,但当时某些旧服务(尤其是某些规模较大的服务例如Exchange Online)并未迁移,因此现在这部分是需要迁移的。
我发现有一位微软员工在他们的LinkedIn资料中提到了“CloudOptimal”。微软至少有一个关于CloudOptimal的内部会议,旨在培训数百名微软工程师如何迁移到Azure,或者在Azure中构建第一方商业服务。甚至还有CloudOptimal T恤,在eBay上出售的二手价格为24.99美元。
一位Azure程序经理的LinkedIn资料显示,他的工作是让微软服务通过CloudOptimal项目“虚拟化工作负载并运行在Azure上”。资料显示,“这个项目帮助我们朝着融合微软分散基础设施、带来Azure新能力、降低COGS(销售成本)的长期愿景迈进了一步,并影响着微软季度财报中所有三个细分业务方向的收益情况。”
据说,Exchange和SharePoint的关键部分仍然运行在为专门为其设计的Autopilot裸机系统上,在某些情况下,这些服务的前端服务器是运行在Azure虚拟机中的。但是更为复杂的数据库和邮箱服务器还没有做到这一点。不管怎样,微软10年前许下的将自身服务前部迁移到Azure上的承诺似乎终于要实现了。
好文章,需要你的鼓励
当前企业面临引入AI的机遇与挑战。管理层需要了解机器学习算法基础,包括线性回归、神经网络等核心技术。专家建议从小规模试点开始,优先选择高影响用例,投资数据治理,提升员工技能。对于影子IT现象,应将其视为机会而非问题,建立治理流程将有效工具正式化。成功的AI采用需要明确目标、跨部门协作、变革管理和持续学习社区建设。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
美国垃圾收集行业2024年创收690亿美元,近18万辆垃圾车每周运营六至七天,每日停靠超千次。设备故障成为行业最大隐性成本,每辆车年均故障费用超5000美元。AI技术通过实时监控传感器数据,能提前数周预测故障,优化零部件库存管理,减少重复维修。车队报告显示,预测性维护每辆车年节省高达2500美元,显著提升运营效率和服务可靠性。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。