AWS今天宣布在GitHub上提供SaaS Boost,这也是AWS为简化客户软件项目而发布的一系列开源工具中的最新一项。
SaaS应用的用途和设计差异很大,但通常都基于相同的基本构建块进行构建。一个应用需要一个系统,用于加载用户、集成支付处理服务以向客户收费、监控各项机制以检测技术故障。SaaS Boost以预打包模块的形式提供这些组件,再加上其他组件,让企业无需从零开始构建所有组件。
SaaS Boost的模块主要实施形式是软件容器,利用AWS Lambda无服务器计算服务来运行其中的很多服务。
这些模块中相当大一部分专用于用户加载,在企业SaaS应用中,这通常涉及的不仅仅是为客户注册时生成帐户。应用通常还需要分配其他基础设施来支持新用户。SaaS Boost具有可立即使用的代码,这样SaaS服务就可以使用这些代码为每个新用户设置一个带有虚拟专用网络的AWS基础设施环境。
AWS的工程师还添加了一些扩展选项让企业可以自定义配置工作流程。例如,企业可以配置SaaS Boost以为每个用户提供除计算资源和虚拟专用网络之外的数据库实例。
另一个SaaS Boost模块提供了将客户帐户连接到支付系统的功能,以便可以对他们进行计费。基础设施资源分配给每个客户,然后通过第三个管理控制台模块进行管理。IT团队可以使用这个控制台来控制各项设置,例如分配给部署的实例大小。
SaaS Boost涵盖的另外两个场景是升级和监控。AWS提供给的一个工具可以让开发人员将应用升级项打包到容器中,使其更易于推送部署。为了帮助企业监控应用的运行状况,SaaS Boost还可以收集有关服务的基础设施利用率和访问模式相关数据。
该工具包中的很多模块都是运行在AWS Lambda服务上的。根据SaaS Boost文档显示,这是因为用于加载用户等任务的代码只会偶尔被激活(例如当新客户注册时才会激活),而Lambda的定价模型可降低此类零星工作流程的成本,该服务是按照代码激活和每次运行的持续时间进行计费的,这要比租用一个按照配置(而不是使用情况)每秒计费的云实例更具成本效益。
AWS高管Adrian De Luca在博客中写道,SaaS Boost已经引起了数百位开发人员的兴趣。未来,AWS希望围绕该项目构建一个开源贡献者社区,此外还计划邀请外部维护者帮助确定项目功能路线图的方向。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。