DevOps 团队、ML 工程师和数据科学家现可放心地存储、保障、治理和管理AI组件,包括业界首个检测恶意ML模型的平台
2023年12月5日 —— 流式软件公司、企业软件供应链平台提供商JFrog推出ML模型管理功能,这是业界首套旨在简化机器学习(ML)模型管理和安全性的功能。JFrog 平台中的全新ML模型管理功能使AI交付与企业现有的 DevOps 和 DevSecOps 实践保持一致,从而加速、保护和管理ML组件的发布。
JFrog 联合创始人兼首席技术官 Yoav Landman 表示:"如今,数据科学家、ML工程师和 DevOps 团队在交付软件方面没有通用的流程。这往往会导致团队之间发生摩擦,造成一定规模的困难,以及整体产品组合在管理和合规性方面缺乏标准。如果没有 Python 及其所依赖的软件包,机器学习模型制品是不完整的,且通常使用 Docker 容器为其提供服务。我们的客户已经将JFrog视为制品管理和DevSecOps流程的黄金标准。数据科学家和软件工程师开发了现代化AI功能,他们已经是 JFrog 的原生用户。随着我们将机器学习模型管理以及模型安全性和合规性引入统一的软件供应链平台,以帮助他们在AI时代大规模交付可信软件,因此,此次发布也就顺理成章地成为下一步举措。"
越来越多用户使用AI和 ML。IDC 研究表明,包括软件、硬件和服务在内的全球 AI/ML 市场预计将在 2023 年增长 19.6%,超过 5000 亿美元。然而,随着越来越多的 ML 模型投入生产,最终用户往往面临着成本、缺乏自动化、缺乏专业知识以及扩展能力等方面的挑战。[1]
IDC DevOps 与 DevSecOps 研究副总裁 Jim Mercer 表示:“将 ML 模型从头到尾部署到生产中需要耗费大量时间和精力。然而,即使投入生产,用户也会面临模型性能、模型漂移和偏差等挑战。因此,拥有一个单一的记录系统,帮助实现ML模型的自动开发、持续管理和安全性,所有其他组件打包到应用程序中,这样就能够为优化流程提供一个令人信服的替代方案。”
使用 JFrog 全新 ML 模型管理功能,企业能够:
JFrog产品与工程高级副总裁Yossi Shaul表示:“越来越多的企业开始将ML模型纳入其应用程序中,而且随着一些政府法规要求软件供应商明确列出其软件中的内容,我们相信不久后这些指导方针也将涵盖 ML和 AI 模型。我们很高兴能为客户提供代理、存储、保障和管理模型以及其他软件组件的简便方法,帮助他们加快创新步伐,同时为未来需求做好充分准备。”
[1] IDC,《MLOps -- ML 与 DevOps 的结合》,作者:DevOps 与 DevSecOps 研究副总裁 Jim Mercer,2022 年 3 月
https://www.idc.com/getdoc.jsp?containerId=US48544922&pageType=PRINTFRIENDLY
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。