全新 JFrog Artifactory 集成为开发人员和数据科学家提供开源软件解决方案,可简化并安全加速 ML 模型开发
2024年5月7日 —— 流式软件公司、JFrog 软件供应链平台的缔造者JFrog (纳斯达克股票代码:FROG)近期宣布实现JFrog Artifactory和Databricks开发的开源软件平台MLflow的全新机器学习(ML)生命周期集成。继今年早些时候发布与 Qwak 和 Amazon SageMaker 的原生集成后,JFrog 扩展了其通用AI解决方案,为企业提供以 Artifactory 作为模型注册中心的单一记录系统。这项全新集成让 JFrog 用户在简化的端到端 DevSecOps 工作流中,结合所有其他软件开发组件,高效地构建、管理和交付 ML 模型以及生成式AI(GenAI)驱动的应用程序。通过确保每个模型不可变性和可追溯性,企业可以验证 ML 模型的安全性和来源,从而发展负责任的AI实践。
行业研究表明,为创建新的AI驱动应用程序而构建的 ML 模型中,有 80% 或更多的模型无法部署,这主要是由于将模型集成到当前操作时存在技术障碍。JFrog与MLflow的集成通过将MLflow常用的开源模型开发解决方案与企业成熟的DevOps工作流无缝结合,帮助企业克服技术难题。从实验到生产,这一集成为ML模型提供端到端的可视性、自动化、可控性和可追溯性。
JFrog首席技术官Yoav Landman表示: “企业要想成功地接受并大规模交付AI和GenAI驱动的应用,开发人员和数据科学团队就必须像管理所有软件包一样,以可信赖的方式对模型进行管理。唯有使用一个通用的、可扩展的、统一针对所有二进制文件的单一记录系统才能实现这一目标,该系统可提供版本控制、生命周期控制和安全控制,而我们与MLflow的新集成可提供这些功能。”
JFrog MLOps:所有模型的单一事实来源
基于与市场上所有主要ML工具的成功集成,JFrog Artifactory 和 MLflow 的集成使 ML 工程师、Python、Java 和 R 开发人员能够自由地使用自己偏好的工具堆栈,并将 Artifactory 作为其黄金标准模型注册表。JFrog 的通用可扩展平台还能够原生代理 Hugging Face,使开发人员能够始终访问可用的开源模型,同时检测恶意模型并执行许可合规性。该解决方案还配备了JFrog平台提供的软件安全功能和扫描仪,以维护无风险的ML应用。
MLSecOps —— 值得信赖且经过策划的模型
JFrog安全研究团队最近在公开的Hugging Face AI库中发现了数百个恶意AI ML模型的实例,这构成了数据泄露或攻击的重大风险。这一事件凸显了潜伏于AI驱动系统中的潜在威胁,并强调了增强安全意识和维护网络安全的必要性。
JFrog Artifactory 与 MLflow 的集成将助力用户更轻松地构建、训练和部署模型,并利用 JFrog 的扫描环境,严格检查上传到 Hugging Face 的每个新模型,从而在安全性、模型管理、版本控制、可追溯性和信任度等方面实现更大的优化。
好文章,需要你的鼓励
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
阿里达摩院联合浙江大学推出VideoRefer套件,这是首个能够精确理解视频中特定物体的AI系统。该系统不仅能识别整体场景,更能针对用户指定的任何物体进行详细分析和跨时间追踪。研究团队构建了包含70万样本的高质量数据集VideoRefer-700K,并设计了全面的评估体系VideoRefer-Bench。实验显示该技术在专业视频理解任务中显著超越现有方法,在安防监控、自动驾驶、视频编辑等领域具有广阔应用前景。
OpenAI推出新AI模型GPT-5-Codex,能够在无用户协助下完成数小时的编程任务。该模型是GPT-5的改进版本,使用额外编码数据训练。测试显示,GPT-5-Codex可独立工作超过7小时,能自动发现并修复编码错误。在重构基准测试中得分51.3%,比GPT高出17%以上。模型可根据任务难度调整处理时间,简单请求处理速度显著提升。目前已在ChatGPT付费计划中提供。
Sa2VA是由UC默塞德等高校联合开发的突破性AI系统,首次实现图像视频的统一理解与精确分割。通过巧妙融合SAM-2视频分割技术和LLaVA多模态对话能力,Sa2VA能够同时进行自然对话和像素级物体标注。研究团队还构建了包含7万多个复杂视频表达式的Ref-SAV数据集,显著提升了AI在长文本描述和复杂场景下的表现。实验显示,Sa2VA在多个基准测试中达到业界领先水平,为视频编辑、医疗诊断、智能监控等领域带来新的应用可能性。