最新报告揭示全球范围内高级管理人员与一线运营人员之间存在多重认知脱节,这一现象造成了人工智能 / 机器学习(AI/ML)技术标准化应用、安全检测和漏洞修补方面的鸿沟
2024年7月22日 —— 流式软件公司、JFrog 软件供应链平台的缔造者JFrog(纳斯达克股票代码:FROG)近期发布最新报告,揭示了企业管理人员和一线团队在MLOps和安全认知上的差异,而这一认知差异正在增加全球软件供应链(SSC)遭受攻击的风险。
IDC 最近的一项调查数据显示,软件供应链安全漏洞大幅增加,同比增幅高达241%。而令人惊讶的是,只有 30% 的受访者认为解决软件供应链中的漏洞是保障安全的当务之急。
JFrog 大中华和日本地区总经理董任远表示:“当今软件供应链的复杂性带来了前所未有的安全风险。尽管企业管理层努力以适配的设备为一线团队赋能,但由于应用工具繁杂、开源和ML模型审批流程冗长、审计和合规性检查繁多,开发人员在提高效率和加快发展生产力方面举步维艰。这种矛盾凸显了企业亟需重新思考自身安全战略,致力于更多地关注AI / ML组件,将管理层和执行层建立紧密协作,从而有效保障其软件供应链的安全。”
JFrog 的最新报告揭示了安全部门主管和一线软件团队之间在恶意开源软件包检测、AI / ML集成和代码级安全扫描方面存在的多项差异,包括:
JFrog 的研究还深入探讨了软件供应链安全性、认知性和AI / ML技术应用等方面在地区上的差异,其中:
欲深入了解管理人员如何进一步加强与开发人员、安全和数据科学团队的协作,以更好地保障软件供应链的安全,请登录JFrog官方网站,下载并查看完整报告。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。