Oracle公司今天推出了最新版本的Exadata数据库优化计算平台,宣称与上一代产品相比,其在人工智能模型训练中使用的矢量搜索性能提高了55%,分析扫描吞吐量提高了2.2倍,交易处理性能提高了25%。
Exadata X11M接替了18个月前推出的Exadata X10M。Oracle在这一版本中强调了灵活性,指出该系统可以在企业内部使用,也可以通过所有主要的云服务访问,还可以作为Oracle托管服务在本地部署。
它采用了AMD最新一代的 96 核EPYC处理器和远程直接内存访问技术。该技术允许在联网计算机的内存之间直接传输数据,不涉及任何一台计算机的操作系统或CPU。
Oracle表示,该版本的软件增强功能将RDMA性能提高了33%,与X10M相比,全闪存存储的使用将访问时间缩短了一半。
更快的矢量搜索
Oracle特别强调了该机器在矢量搜索方面的性能提升,矢量搜索是一种寻找数据数据的方法,与查询相似但不完全相同。它是推荐系统和自然语言处理等人工智能应用的核心功能。
该平台还支持持久矢量索引搜索功能,其中矢量索引及其相关数据不是完全存储在主内存中,而是存储在持久存储介质上。这样就可以在大型数据集上进行搜索,同时还能提高可用性。
新的矢量距离运算符会根据 SQL 查询返回矢量之间的距离。距离运算符通过测量两个向量之间的距离来量化它们之间的相似或不相似程度,距离越小表示项目之间的关系越密切。
Exadata数据库服务产品管理副总裁Bob Thome表示:“计算向量之间的距离非常耗费 CPU。”“我们将其下推到存储层,使其速度更快。”
Thome表示,矢量搜索可以透明地卸载到Exadata存储,并利用比传统架构快30倍的算法。搜索查询也可以在存储服务器之间自动并行。
这与软件有关
Oracle指出,Exadata使用现成的组件,通过软件实现其速度和灵活性。Thome表示:“如果你只是采用标准架构的CPU,你实现不了同样的结果。”“我们独特的数据智能软件可以实现更高量级的性能。”
这包括用于节点间集群协调的专有算法和可加速对存储数据的访问的独特RDMA 缓存功能。一项名为Smart Scan的功能可自动将数据密集型 SQL 操作卸载到存储中,而另一项功能则可自动将行数据转换为内存中的列格式,以便进行高速分析。Oracle称,与X10M相比,分析查询处理的速度最多可提高25%。
Oracle公司仍然重视多云部署,其目标是使Exadata成为所有企业使用该公司数据库管理软件的首选平台。去年7月,Oracle宣布推出一项服务,利用多个云实例大幅降低 Exadata 的成本。今年9月,在谷歌云和微软的Azure 之外,该公司平息了长久以来与AWS的争端,在AWS上的Oracle Cloud Infrastructure 上提供Exadata数据库服务。
数据库和自主服务产品营销全球副总裁 Steve Zivanic 表示,运行 Exadata工作负载的客户现在可以“在不同的部署场景之间移动,而不会出现停机或中断”。“如果你在企业内部部署,但想涉足云计算,不需要移植或更改应用程序。 你可以随心所欲地移动工作负载。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。