ZDNet至顶网软件频道消息:直言不讳的说,如今一谈到企业的数据分析战略就一定要提到大数据。大数据占据了媒体和公众的视线。并非说大数据不重要,实际上,目前大数据的潜力只被开发了微不足道的一点点。然而与此同时,企业的业务和技术高管决不应忽视在ERP、CRM等企业应用中已经存在的数据,因为这些数据也拥有令人难以置信的重要价值。
企业在Oracle技术上做了大量投资以部署应用,而新数据也持续不断地以TB量级逐日增加。找到一种更快的、立即可用的方式,将所有数据提供给企业内部用户,使其能够实时分析数据,将会给企业带来巨大的优势。
试想一下,如今的企业专注于满足客户的需求,而客户则通过各种渠道接触到企业并与之产生互动。消费者正变得越来越没有耐心,因此企业需要立即对客户的问题给出答案。这意味着,以往的几小时几小时地等待批处理作业运行(现在仍有这样的情况发生)或者使用预制报告提供信息对如今的消费者来说是无法接受的。预制报告产生信息的速度很慢,且难以修改。现在的企业需要的是瞬时给出答案,快速建模,做出实时决策。
迄今为止,阻碍企业获得实时洞察力的主要障碍之一,就是数据怎样在数据库中格式化。交易系统用行格式可以实现最佳性能,而数据分析系统则用列格式最好,同时拥有两种系统的企业并非不常见,但在这些不同系统之间进行数据的移动和变换相当费力,常常是数据一就位就“停滞”了。
不久前,甲骨文公司在其位于美国加州红木城总部推出的最新Oracle Database In-Memory解决了这个问题,它在同一个系统中同时支持查询和交易。通过对双格式的支持,Oracle Database In-Memory可以同时在列中(以实现高速数据分析)和行中(以提供最佳交易性能)编排数据。两种格式同时处于活动状态,而且完全一致。
众所周知,业务并不是总按计划进行。意外问题会突然出现,需要快速解决,与此同时,数据量也在持续不断地增长。当企业管理者需要基于相关数据以确定解决办法时,搜索数据有如大海捞针一般。
假定你是一位销售经理,通过几家运输公司向客户交付产品。如果这些运输公司中有一家突然发生了罢工,那么你的产品交付计划会受到哪些影响?为了找出这种意外事件对业务会造成怎样的影响,你必须搜索数10万行订单内容。
甲骨文设计了一个试验,在试验中用户需要在JD Edwards系统中搜索超过1.04亿行销售订单内容,以找到几个客户的信息。运用标准数据库设置,大约13分钟完成搜索。而采用Oracle Database In-Memory,不到1秒就得到了搜索结果。
在体育界有一句名言:伟大选手谈论的是如何比赛中创造时间和空间。Oracle Database In-Memory也是如此,它为企业更好地决策而创造时间与空间,针对最细节的业务问题也能即时给出答案。
让我们假设另一种情况:你在跟一个客户进行电话交谈,你需要总结一下不同地区及不同客户类别下的产品表现,进而给出一个有竞争力的报价。如果使用传统数据分析系统,从ERP系统抽取数据,进行模式分析,可能需要30分钟、1个小时甚至更长。而用Oracle Database In-Memory,你可以在通电话的同时立即在系统中查询,时间大大减少。
一次测试显示,总结4100万行发票内容大约需要4个小时。在对应用进行微调且用Oracle Database In-Memory再次进行试验后,只用4秒钟便能完成任务。
Oracle Database In-Memory可在现有Oracle数据库系统上运行,无需对应用进行任何修改。这意味着合同谈判、分析工资变化幅度等日常应用的性能都能得到提高,最终用户能够立即获得所需信息。企业现在运行报告、提出问题时,也不必担心系统性能低下了。这将有助于促进以数据为主导的实时决策,而这正是实现实时型企业的决定性因素。(本文作者:甲骨文公司系统技术高级副总裁Juan Loaiza)
好文章,需要你的鼓励
Colt科技服务公司推出超低延迟云连接服务Colt ULL DCA,专门面向加密货币交易商和AI应用开发企业的高速需求。该服务结合超低延迟网络和专用云接入平台,绕过公共互联网提供专用高速路径。在AWS亚洲区域测试中,平均延迟比原生路由降低15%。随着亚太地区数字资产交易成熟和AI需求爆发,企业对安全高性能连接需求激增,Colt正加速在东南亚扩张布局。
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。