ZDNet至顶网软件频道消息:直言不讳的说,如今一谈到企业的数据分析战略就一定要提到大数据。大数据占据了媒体和公众的视线。并非说大数据不重要,实际上,目前大数据的潜力只被开发了微不足道的一点点。然而与此同时,企业的业务和技术高管决不应忽视在ERP、CRM等企业应用中已经存在的数据,因为这些数据也拥有令人难以置信的重要价值。
企业在Oracle技术上做了大量投资以部署应用,而新数据也持续不断地以TB量级逐日增加。找到一种更快的、立即可用的方式,将所有数据提供给企业内部用户,使其能够实时分析数据,将会给企业带来巨大的优势。
试想一下,如今的企业专注于满足客户的需求,而客户则通过各种渠道接触到企业并与之产生互动。消费者正变得越来越没有耐心,因此企业需要立即对客户的问题给出答案。这意味着,以往的几小时几小时地等待批处理作业运行(现在仍有这样的情况发生)或者使用预制报告提供信息对如今的消费者来说是无法接受的。预制报告产生信息的速度很慢,且难以修改。现在的企业需要的是瞬时给出答案,快速建模,做出实时决策。
迄今为止,阻碍企业获得实时洞察力的主要障碍之一,就是数据怎样在数据库中格式化。交易系统用行格式可以实现最佳性能,而数据分析系统则用列格式最好,同时拥有两种系统的企业并非不常见,但在这些不同系统之间进行数据的移动和变换相当费力,常常是数据一就位就“停滞”了。
不久前,甲骨文公司在其位于美国加州红木城总部推出的最新Oracle Database In-Memory解决了这个问题,它在同一个系统中同时支持查询和交易。通过对双格式的支持,Oracle Database In-Memory可以同时在列中(以实现高速数据分析)和行中(以提供最佳交易性能)编排数据。两种格式同时处于活动状态,而且完全一致。
众所周知,业务并不是总按计划进行。意外问题会突然出现,需要快速解决,与此同时,数据量也在持续不断地增长。当企业管理者需要基于相关数据以确定解决办法时,搜索数据有如大海捞针一般。
假定你是一位销售经理,通过几家运输公司向客户交付产品。如果这些运输公司中有一家突然发生了罢工,那么你的产品交付计划会受到哪些影响?为了找出这种意外事件对业务会造成怎样的影响,你必须搜索数10万行订单内容。
甲骨文设计了一个试验,在试验中用户需要在JD Edwards系统中搜索超过1.04亿行销售订单内容,以找到几个客户的信息。运用标准数据库设置,大约13分钟完成搜索。而采用Oracle Database In-Memory,不到1秒就得到了搜索结果。
在体育界有一句名言:伟大选手谈论的是如何比赛中创造时间和空间。Oracle Database In-Memory也是如此,它为企业更好地决策而创造时间与空间,针对最细节的业务问题也能即时给出答案。
让我们假设另一种情况:你在跟一个客户进行电话交谈,你需要总结一下不同地区及不同客户类别下的产品表现,进而给出一个有竞争力的报价。如果使用传统数据分析系统,从ERP系统抽取数据,进行模式分析,可能需要30分钟、1个小时甚至更长。而用Oracle Database In-Memory,你可以在通电话的同时立即在系统中查询,时间大大减少。
一次测试显示,总结4100万行发票内容大约需要4个小时。在对应用进行微调且用Oracle Database In-Memory再次进行试验后,只用4秒钟便能完成任务。
Oracle Database In-Memory可在现有Oracle数据库系统上运行,无需对应用进行任何修改。这意味着合同谈判、分析工资变化幅度等日常应用的性能都能得到提高,最终用户能够立即获得所需信息。企业现在运行报告、提出问题时,也不必担心系统性能低下了。这将有助于促进以数据为主导的实时决策,而这正是实现实时型企业的决定性因素。(本文作者:甲骨文公司系统技术高级副总裁Juan Loaiza)
好文章,需要你的鼓励
这项研究介绍了一种名为FlowPathAgent的神经符号代理系统,用于解决流程图归因问题。研究团队提出了流程图精细归因这一新任务,构建了FlowExplainBench评估基准,并开发了结合视觉分割、符号图构建和基于代理的图形推理的方法。实验表明,该方法在归因准确性上比现有基线提高了10-14%,特别在处理复杂流程图时表现出色,为提升人工智能系统在处理结构化视觉-文本信息时的可靠性和可解释性提供了新途径。
这项研究首次从神经元层面揭示了大型语言模型(LLM)评估中的"数据污染"机制。研究团队发现当模型在训练中接触过测试数据时,会形成特定的"捷径神经元",使模型无需真正理解问题就能给出正确答案。他们提出了一种新方法,通过识别并抑制这些神经元(仅占模型总神经元的约1%),成功恢复了模型的真实能力表现。实验证明,该方法与权威可信基准测试结果高度一致(相关系数>0.95),并在不同基准和参数设置下都表现出色,为解决LLM评估可信度问题提供了低成本且有效的解决方案。
这份来自向量研究所、康奈尔大学和格罗宁根大学研究团队的综述分析了基于大语言模型的代理型多智能体系统中的信任、风险和安全管理框架(TRiSM)。研究系统地探讨了代理型AI从概念基础到安全挑战,提出了包含治理、可解释性、模型运营和隐私/安全四大支柱的TRiSM框架。文章还详细分析了威胁向量、风险分类,并通过真实案例研究展示了潜在脆弱性。
这项研究提出了一种名为ConfiG的创新方法,通过生成针对性的数据增强样本来解决知识蒸馏中的协变量偏移问题。研究团队利用教师模型和学生模型之间的预测差异,引导扩散模型生成那些能挑战学生模型的样本,从而减少模型对训练数据中欺骗性特征的依赖。实验表明,该方法在CelebA、SpuCo Birds和Spurious ImageNet数据集上显著提升了模型在缺失组别上的性能,为资源受限环境下的AI应用提供了实用解决方案。