ZD至顶网软件频道消息: SAP表示已经投资了Vivanda。据我们了解,Vivanda是一家旨在使用大数据和分析进行食物数据化和个性化的企业,主要提供预测食品的个性化服务,该公司的系统能够利用算法处理研究、科学和食物选择。
SAP同Vivanda的协议是一种利用其HANA技术的方式。通过投资,Vivanda获得了一个大的合作伙伴让其API、咨询和分析服务能够接触到更多的客户产品食物。
从表面上看,SAP此举似乎是另一项帮助瞄准食品和消费品行业的投资。然而,SAP表示这笔未披露金额的投资将让该公司同Vivanda就其FlavorPrint技术进行更紧密地合作,而该技术提供个性化的食物和饮料建议,映射了食物和风味基因,16000种芳香化学品,33种口味和17种纹理以及营养和成分。
让我们看看Vivanda的FlavorPrint模型是如何工作的:
• Vivanda识别食品属性并且建立模型,匹配消费者的口味偏好、产品、菜肴、食谱和饮料。
• 然后该公司部署名为"打印"的流程,使用一种算法将FlavorPrint匹配给一个人或者食物项目。FlavorPrint就像是一个UPC代码或者指纹。
• 机器学习调整食物的口感和风味。
• 客户能够得到分析,看到口味趋势以及在不同人群中受欢迎的程度。然后企业就可以进行食物和食用体验的市场推广。
IBM的Watson已经在和大厨们合作,而Vivanda的方法旨在让大数据为大众服务更多。参看:For chefs and foodies, big data could be the new secret ingredient
也许SAP可以利用Vivanda更好地帮助HANA瞄准核心行业,但是即使天不遂人愿,食品科学和数字化味道也是有趣的投资方向。
好文章,需要你的鼓励
希腊塞萨洛尼基大学研究团队开发出MIR-L算法,通过"彩票假说"发现大型图像修复网络中的关键子网络。该算法采用迭代剪枝策略,将网络参数减少90%的同时保持甚至提升修复性能。MIR-L能同时处理去雨、去雾、降噪等多种图片问题,为资源受限设备的实时图像处理提供了高效解决方案,具有重要的实用价值和环保意义。
这项由OpenRouter公司团队和Andreessen Horowitz(a16z)投资机构联合开展的研究,于2025年12月发表。
卡内基梅隆大学团队提出DistCA技术,通过分离AI模型中的注意力计算解决长文本训练负载不平衡问题。该技术将计算密集的注意力任务独立调度到专门服务器,配合乒乓执行机制隐藏通信开销,在512个GPU的大规模实验中实现35%的训练加速,为高效长文本AI模型训练提供了新方案。