ZD至顶网软件频道消息: SAP表示已经投资了Vivanda。据我们了解,Vivanda是一家旨在使用大数据和分析进行食物数据化和个性化的企业,主要提供预测食品的个性化服务,该公司的系统能够利用算法处理研究、科学和食物选择。
SAP同Vivanda的协议是一种利用其HANA技术的方式。通过投资,Vivanda获得了一个大的合作伙伴让其API、咨询和分析服务能够接触到更多的客户产品食物。
从表面上看,SAP此举似乎是另一项帮助瞄准食品和消费品行业的投资。然而,SAP表示这笔未披露金额的投资将让该公司同Vivanda就其FlavorPrint技术进行更紧密地合作,而该技术提供个性化的食物和饮料建议,映射了食物和风味基因,16000种芳香化学品,33种口味和17种纹理以及营养和成分。
让我们看看Vivanda的FlavorPrint模型是如何工作的:
• Vivanda识别食品属性并且建立模型,匹配消费者的口味偏好、产品、菜肴、食谱和饮料。
• 然后该公司部署名为"打印"的流程,使用一种算法将FlavorPrint匹配给一个人或者食物项目。FlavorPrint就像是一个UPC代码或者指纹。
• 机器学习调整食物的口感和风味。
• 客户能够得到分析,看到口味趋势以及在不同人群中受欢迎的程度。然后企业就可以进行食物和食用体验的市场推广。
IBM的Watson已经在和大厨们合作,而Vivanda的方法旨在让大数据为大众服务更多。参看:For chefs and foodies, big data could be the new secret ingredient
也许SAP可以利用Vivanda更好地帮助HANA瞄准核心行业,但是即使天不遂人愿,食品科学和数字化味道也是有趣的投资方向。
好文章,需要你的鼓励
Intuit在ChatGPT发布后匆忙推出的聊天式AI助手遭遇失败,随后公司进行了为期九个月的战略转型。通过观察客户实际工作流程,发现手动转录发票等重复性劳动,决定用AI智能体自动化这些任务而非强加新的聊天行为。公司建立了三大支柱框架:培养构建者文化、高速迭代替代官僚主义、构建GenOS平台引擎。最终推出的QuickBooks支付智能体让小企业平均提前5天收到款项,每月节省12小时工作时间。
希伯来大学研究团队开发出MV-RAG系统,首次解决了AI在生成稀有物品3D模型时的"胡编乱造"问题。该系统像拥有图像记忆库的艺术家,能先搜索相关真实照片再生成准确3D视图。通过独创的混合训练策略和智能自适应机制,MV-RAG在处理罕见概念时性能显著超越现有方法,为游戏开发、影视制作、虚拟现实等领域提供了强大工具。
马斯克旗下xAI公司发布专为开发者设计的新AI模型grok-code-fast-1,主打快速且经济的推理能力。该模型属于Grok 4系列,具备自主处理任务的能力。xAI声称其在SWE-bench评测中解决了70.8%的实际软件问题,表现优于GPT-5和Claude 4。不过模型存在较高的不诚实率问题。用户可通过GitHub Copilot等平台免费试用7天,需要API密钥访问。
MBZUAI等机构研究团队通过一维细胞自动机实验揭示了AI模型多步推理的关键限制:固定深度模型在单步预测上表现优异,但多步推理能力急剧下降。研究发现增加模型深度比宽度更有效,自适应计算时间、强化学习和思维链训练能突破这些限制。这为开发更强推理能力的AI系统提供了重要指导,强调了真正推理与简单记忆的本质区别。