ZD至顶网软件频道消息: SAP表示已经投资了Vivanda。据我们了解,Vivanda是一家旨在使用大数据和分析进行食物数据化和个性化的企业,主要提供预测食品的个性化服务,该公司的系统能够利用算法处理研究、科学和食物选择。
SAP同Vivanda的协议是一种利用其HANA技术的方式。通过投资,Vivanda获得了一个大的合作伙伴让其API、咨询和分析服务能够接触到更多的客户产品食物。
从表面上看,SAP此举似乎是另一项帮助瞄准食品和消费品行业的投资。然而,SAP表示这笔未披露金额的投资将让该公司同Vivanda就其FlavorPrint技术进行更紧密地合作,而该技术提供个性化的食物和饮料建议,映射了食物和风味基因,16000种芳香化学品,33种口味和17种纹理以及营养和成分。
让我们看看Vivanda的FlavorPrint模型是如何工作的:
• Vivanda识别食品属性并且建立模型,匹配消费者的口味偏好、产品、菜肴、食谱和饮料。
• 然后该公司部署名为"打印"的流程,使用一种算法将FlavorPrint匹配给一个人或者食物项目。FlavorPrint就像是一个UPC代码或者指纹。
• 机器学习调整食物的口感和风味。
• 客户能够得到分析,看到口味趋势以及在不同人群中受欢迎的程度。然后企业就可以进行食物和食用体验的市场推广。
IBM的Watson已经在和大厨们合作,而Vivanda的方法旨在让大数据为大众服务更多。参看:For chefs and foodies, big data could be the new secret ingredient
也许SAP可以利用Vivanda更好地帮助HANA瞄准核心行业,但是即使天不遂人愿,食品科学和数字化味道也是有趣的投资方向。
好文章,需要你的鼓励
2024年10月8日,Geoffrey Hinton(杰弗里·辛顿)因在人工神经网络领域的开创性工作获得诺贝尔物理学奖。
NVIDIA联合多伦多大学开发的ChronoEdit系统通过将图像编辑重新定义为视频生成问题,让AI具备了物理常识。该系统引入时间推理机制,能够想象编辑的完整变化过程,确保结果符合物理规律。在专业测试中,ChronoEdit超越了所有开源竞争对手,特别在需要物理一致性的场景中表现突出,为自动驾驶、机器人等领域的应用提供了重要技术突破。
这项研究提出了MITS框架,使用信息论中的点互信息指导AI推理过程,解决了传统树搜索方法计算成本高、评估标准模糊的问题。通过动态采样和加权投票机制,MITS在多个推理数据集上显著超越现有方法,同时保持高效的计算性能,为AI推理技术开辟了新方向。