ZD至顶网软件频道消息: 此次推出的Azure混合使用收益计划,微软称该计划可使Azure云里Windows服务器的虚拟实例价格降低四成。
据悉,Azure混合使用收益计划涵盖微软软件保证计划下的双核和16核Windows服务器许可证。而四成的降价取决于使用情况、实例类型和地理位置。而新的工具,用于计算折扣,此举可望进一步推动Azure的采用。
同时发布的尚有Azure Site Recovery(Azure网站恢复),可用于迁移AWS、Vmware、Hyper-V的虚拟机或实体服务器。Azure Site Recovery服务用户可以在Azure门户上标记虚拟机,无需使用PowerShell。
另外,微软还推出了云迁移评估(Cloud Migration Assessment),可用于查看部署在企业内部的服务器设置,并可分析服务器硬件的配置。
好文章,需要你的鼓励
这项研究介绍了一种名为FlowPathAgent的神经符号代理系统,用于解决流程图归因问题。研究团队提出了流程图精细归因这一新任务,构建了FlowExplainBench评估基准,并开发了结合视觉分割、符号图构建和基于代理的图形推理的方法。实验表明,该方法在归因准确性上比现有基线提高了10-14%,特别在处理复杂流程图时表现出色,为提升人工智能系统在处理结构化视觉-文本信息时的可靠性和可解释性提供了新途径。
这项研究首次从神经元层面揭示了大型语言模型(LLM)评估中的"数据污染"机制。研究团队发现当模型在训练中接触过测试数据时,会形成特定的"捷径神经元",使模型无需真正理解问题就能给出正确答案。他们提出了一种新方法,通过识别并抑制这些神经元(仅占模型总神经元的约1%),成功恢复了模型的真实能力表现。实验证明,该方法与权威可信基准测试结果高度一致(相关系数>0.95),并在不同基准和参数设置下都表现出色,为解决LLM评估可信度问题提供了低成本且有效的解决方案。
这份来自向量研究所、康奈尔大学和格罗宁根大学研究团队的综述分析了基于大语言模型的代理型多智能体系统中的信任、风险和安全管理框架(TRiSM)。研究系统地探讨了代理型AI从概念基础到安全挑战,提出了包含治理、可解释性、模型运营和隐私/安全四大支柱的TRiSM框架。文章还详细分析了威胁向量、风险分类,并通过真实案例研究展示了潜在脆弱性。
这项研究提出了一种名为ConfiG的创新方法,通过生成针对性的数据增强样本来解决知识蒸馏中的协变量偏移问题。研究团队利用教师模型和学生模型之间的预测差异,引导扩散模型生成那些能挑战学生模型的样本,从而减少模型对训练数据中欺骗性特征的依赖。实验表明,该方法在CelebA、SpuCo Birds和Spurious ImageNet数据集上显著提升了模型在缺失组别上的性能,为资源受限环境下的AI应用提供了实用解决方案。