对于制造业来说,客户调查、产品质量报告、工厂设备日志等等都能产生大量数据,所以制造企业并不缺少数据,他们面临的问题是数据的来源与质量。数据的源头是哪里,来自于内部还是外部?数据的复杂程度如何?是否是专有数据?如果数据来自于SAP和主机,数据的名称和结构会很复杂,与其他数据源的整合成本会很高且耗时很长,并且访问和使用不同类型的数据需要不同的方法等等。
如果上述问题解决了,即确定了适合的数据集之后,制造企业就可以开始利用分析工具或机器学习、AI预测模型等方式有效地获取洞察。这些技术能够根据当前趋势对未来的结果进行更准确的预测,并根据未来的潜在情况进行更好的规划,让决策更加智能。
设备综合效率(OEE)的分析
要评估生产设备的运行情况,设备综合效率(OEE)是最广泛使用的指标。该指标可以用来监测单台机器、生产线、甚至整个工厂的绩效。OEE本质上是通过三大关键因素来衡量生产制造的效率——可用性、效能、质量。
计算OEE时,需要重点考虑的因素包括:材料和零部件的备货情况、维护和修理导致的宕机时间、人员引发的生产延迟,以及产品不良率等等。生产过程中的任何缺陷都可能会导致严重的生产延误,并因为返工或报废而导致成本增加。
梅赛德斯-奔驰公司在生产过程采用了OEE分析,在装配线上安装车轮吊耳时,对扭矩力进行测量好监测,确保安全和合规。
OEE分析还能帮助制造商找到改进的机会。例如,梅赛德斯-奔驰正在与微软合作,通过云计算获取更多的数据用于分析。梅赛德斯-奔驰MO360战略项目就是通过监测OEE来找到效率不高的根本原因,并制定战略来提高绩效。该项目的目标包括:
OEE分析可以为制造商提供改善运营的洞见,并帮助就如何提高生产力和降低成本做出明智的决定。通过长期跟踪OEE,制造商可以确定需要改进的地方,并制定策略提高效率和减少浪费。通过OEE分析,制造商可以让生产设备最高效率地运行,在当今快速变化的全球市场中保持竞争力。
Qlik与微软、Databricks等领先的行业解决方案提供商建立有合作伙伴关系,可以帮助制造业客户更好地利用数据,让企业变得更具韧性、更有效率、更可持续。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。