为进一步推广人工智能平台领域的优秀成果,推动人工智能平台的高水平发展和高质量应用,4月7日,由中国信通院云大所召开的第一期“可信人工智能平台(TAP)案例分享会”活动顺利开展。分享会上,云测数据标注平台作为可信人工智能平台的实践案例进行了详解,探讨AI数据处理工具的发展与实践。
随着人工智能技术在各个行业的落地进程不断加速,数据的质量与效率成为行业新的共同追求。想要用“好的数据”来训练“好的AI”高效高质量的进行AI的应用落地,针对数据采集标注软件工程能力和系统能力的提升必不可少。在这样的背景之下,云测数据基于丰富的数据处理经验,研发出具备自主知识产权的数据标注平台,更好的服务人工智能数据处理需求。

云测数据标注平台创造性的提出“数据在环和模型迭代在环新方式”,通过综合系列工具平台,进行数据在环开发打通,将数据采集、处理、标注、训练、模型输出进行持续迭代集成。相比传统的采集数据、训练模型的方式,数据在环和模型迭代在环新方式,可极大提升模型迭代的速度和提升模型准确度,以及可极大降低数据获取成本、处理成本、标注成本、使用成本。通过综合在环的工具链,形成数据在环迭代系统,将极大的提升人工智能领域的场景落地,节省大量研发时间和成本。
AI数据训练综合效率提升200%
云测数据标注平台为企业提供了可以处理大规模感知数据的能力,可助力企业AI数据训练综合效率提升200%、标注精准度最高达99.99%。结合数据在环,通过引入模型输出预识别结果,更是进一步降低人员处理投入;迭代后期,人员只处理关键高价值数据和对AI辅助标注结果进行审核验证,人力成本逐步下降。
以自动驾驶为例,采用云测数据标注平台,可实现车企DataOps数据闭环中的数据清洗、标注工作,与原流程相比提升2倍的流转效率。
数据管理持续发挥AI数据价值
云测数据标注平台实现了AI数据的可持续管理,不断积累更高质量、更高价值量数据,形成数据优势。在数据安全、大容量数据处理、数据挖掘、数据增强等方面,均可大幅提升数据的使用效率、二次挖掘价值,并可进行数据分级检索,数据资产管理等能力,提升团队协作效率,持续挖掘AI数据价值。
在人工智能领域,要实现AI数据的价值转化,数据处理的工程化能力是前提,也是保障。在具有工程化能力的标注平台的之上,人工智能领域的开发者才能够创造更多的可能性,助力知识图谱、自然语言处理、机器学习/深度学习等AI技术在更广泛的落地场景实现边界拓展与应用落地。
目前,“云测数据标注平台”已经应用到汽车、安防、手机、家居、金融、教育、新零售、地产等行业。其中包含众多世界500强企业、高校科研机构、政府机构、头部AI企业和大型互联网企业,涵盖了计算机视觉、语音识别、自然语言处理、知识图谱等AI主流技术领域。
好文章,需要你的鼓励
研究人员基于Meta前首席AI科学家Yann LeCun提出的联合嵌入预测架构,开发了名为JETS的自监督时间序列基础模型。该模型能够处理不规则的可穿戴设备数据,通过学习预测缺失数据的含义而非数据本身,成功检测多种疾病。在高血压检测中AUROC达86.8%,心房扑动检测达70.5%。研究显示即使只有15%的参与者有标注医疗记录,该模型仍能有效利用85%的未标注数据进行训练,为利用不完整健康数据提供了新思路。
西湖大学等机构联合发布TwinFlow技术,通过创新的"双轨道"设计实现AI图像生成的革命性突破。该技术让原本需要40-100步的图像生成过程缩短到仅需1步,速度提升100倍且质量几乎无损。TwinFlow采用自我对抗机制,无需额外辅助模型,成功应用于200亿参数超大模型,在GenEval等标准测试中表现卓越,为实时AI图像生成应用开辟了广阔前景。
AI云基础设施提供商Coreweave今年经历了起伏。3月份IPO未达预期,10月收购Core Scientific计划因股东反对而搁浅。CEO Michael Intrator为公司表现辩护,称正在创建云计算新商业模式。面对股价波动和高负债质疑,他表示这是颠覆性创新的必然过程。公司从加密货币挖矿转型为AI基础设施提供商,与微软、OpenAI等巨头合作。对于AI行业循环投资批评,Intrator认为这是应对供需剧变的合作方式。
中山大学等机构联合开发的RealGen框架成功解决了AI生成图像的"塑料感"问题。该技术通过"探测器奖励"机制,让AI在躲避图像检测器识别的过程中学会制作更逼真照片。实验显示,RealGen在逼真度评测中大幅领先现有模型,在与真实照片对比中胜率接近50%,为AI图像生成技术带来重要突破。