为进一步推广人工智能平台领域的优秀成果,推动人工智能平台的高水平发展和高质量应用,4月7日,由中国信通院云大所召开的第一期“可信人工智能平台(TAP)案例分享会”活动顺利开展。分享会上,云测数据标注平台作为可信人工智能平台的实践案例进行了详解,探讨AI数据处理工具的发展与实践。
随着人工智能技术在各个行业的落地进程不断加速,数据的质量与效率成为行业新的共同追求。想要用“好的数据”来训练“好的AI”高效高质量的进行AI的应用落地,针对数据采集标注软件工程能力和系统能力的提升必不可少。在这样的背景之下,云测数据基于丰富的数据处理经验,研发出具备自主知识产权的数据标注平台,更好的服务人工智能数据处理需求。

云测数据标注平台创造性的提出“数据在环和模型迭代在环新方式”,通过综合系列工具平台,进行数据在环开发打通,将数据采集、处理、标注、训练、模型输出进行持续迭代集成。相比传统的采集数据、训练模型的方式,数据在环和模型迭代在环新方式,可极大提升模型迭代的速度和提升模型准确度,以及可极大降低数据获取成本、处理成本、标注成本、使用成本。通过综合在环的工具链,形成数据在环迭代系统,将极大的提升人工智能领域的场景落地,节省大量研发时间和成本。
AI数据训练综合效率提升200%
云测数据标注平台为企业提供了可以处理大规模感知数据的能力,可助力企业AI数据训练综合效率提升200%、标注精准度最高达99.99%。结合数据在环,通过引入模型输出预识别结果,更是进一步降低人员处理投入;迭代后期,人员只处理关键高价值数据和对AI辅助标注结果进行审核验证,人力成本逐步下降。
以自动驾驶为例,采用云测数据标注平台,可实现车企DataOps数据闭环中的数据清洗、标注工作,与原流程相比提升2倍的流转效率。
数据管理持续发挥AI数据价值
云测数据标注平台实现了AI数据的可持续管理,不断积累更高质量、更高价值量数据,形成数据优势。在数据安全、大容量数据处理、数据挖掘、数据增强等方面,均可大幅提升数据的使用效率、二次挖掘价值,并可进行数据分级检索,数据资产管理等能力,提升团队协作效率,持续挖掘AI数据价值。
在人工智能领域,要实现AI数据的价值转化,数据处理的工程化能力是前提,也是保障。在具有工程化能力的标注平台的之上,人工智能领域的开发者才能够创造更多的可能性,助力知识图谱、自然语言处理、机器学习/深度学习等AI技术在更广泛的落地场景实现边界拓展与应用落地。
目前,“云测数据标注平台”已经应用到汽车、安防、手机、家居、金融、教育、新零售、地产等行业。其中包含众多世界500强企业、高校科研机构、政府机构、头部AI企业和大型互联网企业,涵盖了计算机视觉、语音识别、自然语言处理、知识图谱等AI主流技术领域。
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
维吉尼亚理工学院研究团队对58个大语言模型在单细胞生物学领域的应用进行了全面调查,将模型分为基础、文本桥接、空间多模态、表观遗传和智能代理五大类,涵盖细胞注释、轨迹预测、药物反应等八项核心任务。研究基于40多个公开数据集,建立了包含生物学理解、可解释性等十个维度的评估体系,为这个快速发展的交叉领域提供了首个系统性分析框架。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
西湖大学王欢教授团队联合国际研究机构,针对AI推理模型内存消耗过大的问题,开发了RLKV技术框架。该技术通过强化学习识别推理模型中的关键"推理头",实现20-50%的内存缩减同时保持推理性能。研究发现推理头与检索头功能不同,前者负责维持逻辑连贯性。实验验证了技术在多个数学推理和编程任务中的有效性,为推理模型的大规模应用提供了现实可行的解决方案。