人工智能数据服务指为AI算法训练及优化提供的数据采集、清洗、信息抽取、标注等服务,以采集和标注为主。在这个过程中,AI数据服务的工程化能力至关重要,数据服务通过工程化的赋能可以广泛地覆盖人工智能不同场景下的数据需求。提升数据服务的工程化能力,需要建设提供底层框架支持和一站式的统一开发平台,将数据采集、数据传输、数据清洗、数据标注、数据管理等进行集成,在解决实际数据需求的同时不断沉淀数据处理能力,形成数据标注平台。
以头部AI数据服务企业云测数据标注平台为例,云测数据标注平台创造性的提出“数据在环和模型迭代在环新方式”,通过综合系列工具平台,进行数据在环开发打通,将数据采集、处理、标注、训练、模型输出进行持续迭代集成。相比传统的采集数据、训练模型的方式,数据在环和模型迭代在环新方式,可极大提升模型迭代的速度和提升模型准确度,以及可极大降低数据获取成本、处理成本、标注成本、使用成本。通过综合在环的工具链,形成数据在环迭代系统,将极大的提升人工智能领域的场景落地,节省大量研发时间和成本。
齐全多样类型工具组件,灵活部署标注场景
由于AI应用场景边界的不断扩展,数据标注工具也从简单过渡到复杂,以往市面上开源工具多已经无法适应工具需求从简易到复杂的变化。加之数据标注业务具有多样性、丰富性,集成多样性、灵活些的标注工具平台成为实现现阶段精准标注数据的首要需求。
云测数据标注平台支持图像、文本、语音、视频以及点云等数据类型的一站式加工处理,拥有3D立体框、点云语义分割、特征点、线段、矩形框、曲线、平面立体框、多边形等丰富类型的专业工具组件,可灵活满足不同的标注需求,配合算法模型进行数据处理落地,并支持标注工具的定制开发,快速响应AI训练多样化需求。
可视化项目管理,加速AI训练产能提升
在云测数据标注平台的流程管理上,可准确地把控从创建任务、分配任务、标注流转到质检/抽检等环节,实现对数据标注过程的全流程掌控。数据标注后经过审核、质检、验收等不同环节确保数据准确性。平台流程之间的自动化流转的作业衔接,达到了更快的流转速度,能更好的提升数据作业的效率。同时在整个项目流转的过程中,操作员无法对数据进行下载和传输,风险管控机制完善,可全方位保证数据的隐私安全。以自动驾驶为例,采用云测数据标注平台,可实现车企DataOps数据闭环中的数据清洗、标注工作,与原流程相比提升2倍的流转效率。
据了解,“云测数据标注平台”已经应用到汽车、安防、手机、家居、金融、教育、新零售、地产等行业,云测数据也先后获得北京市人工智能行业赋能典型案例(2023)、中国信通院“2022可信AI案例人工智能平台应用标杆案例”、“以数据为中心的人工智能应用”优秀案等业界权威认可,彰显了云测数据在技术领域的先进性与硬实力。
好文章,需要你的鼓励
这项研究由新加坡国立大学团队开发的DualParal技术,通过创新的双重并行架构解决了AI视频生成的长度限制问题。该方法同时在时间帧和模型层两个维度实现并行处理,配合分块降噪机制、特征缓存和协调噪声初始化策略,使生成分钟级长视频成为可能。实验表明,在生成1,025帧视频时,DualParal比现有技术减少了高达6.54倍的延迟和1.48倍的内存成本,同时保持了高质量的视频输出,为内容创作者提供了生成更长、更复杂视频叙事的新工具。
SoloSpeech是约翰霍普金斯大学研究团队开发的创新语音处理技术,针对"鸡尾酒会效应"问题提出了全新解决方案。该系统通过级联生成式管道整合压缩、提取、重建和校正过程,实现了高质量目标语音提取。与传统判别式模型相比,SoloSpeech采用无需说话者嵌入的设计,直接利用提示音频的潜在空间信息与混合音频对齐,有效避免特征不匹配问题。在Libri2Mix及多个真实世界数据集上的评测显示,SoloSpeech在清晰度、质量和泛化能力上均达到了领先水平,为语音分离技术开辟了新方向。
这项由北京大学深圳研究生院、伟湾大学、腾讯ARC实验室和兔小贝智能联合研究的Sci-Fi框架,通过创新的对称约束机制,解决了视频帧间插值中的关键问题。研究团队设计了轻量级EF-Net模块,增强结束帧约束力,使其与起始帧形成平衡影响,从而生成更自然流畅的中间过渡帧。实验证明,该方法在各种场景下都优于现有技术,特别适用于电影制作、动画创作和视频编辑领域,显著降低了人力成本。
这项来自西北大学和谷歌的研究突破了传统马尔可夫强化学习的局限,通过贝叶斯自适应RL框架解释了大语言模型中涌现的反思性推理行为。研究团队提出的BARL算法通过维护多个解题策略的后验分布,指导模型何时何地进行反思性探索,在数学推理任务上展现出显著优势,比基线方法减少高达50%的标记使用量,同时提高了准确率。这一研究不仅解释了"为什么反思有用",还提供了实用的指导原则,为AI系统的自适应推理能力开辟了新方向。