作为EMC的企业数据治理高级总监,Barbara Latulippe 向 Potential at Work 社区讲述了她在制定企业数据质量和治理路线图方面的工作经历。 她提倡采取一种协作型、统一的方法来定义数据质量,并强调在所有业务部门(而不仅仅在 IT 与个别业务部门之间)开展合作的必要性。 凭借超过 25 年的 MDM 和企业应用系统实践经验,她对自己的上述见解确信无疑。
信息负责人如何与企业不同人员开展合作,以帮助他们定义数据质量?
Latulippe: 我们会设立自己的信息治理委员会,该委员会由不同业务部门以及不同职能部门参与。 我们不断努力为所有企业属性建立通用定义,这些定义一旦获得审批,我们就会将其纳入自己的业务词汇表中。 现在,可以说我们已经建立了一个通用定义,该定义已获得治理委员会的批准,并受到变更管理的控制。 如果某人提出一个方案,希望为特定字段添加值,或者以不同的方式使用该字段,则他们需要提供业务方案以及成本影响说明,并获得治理委员会的批准。
您是否曾经因数据质量定义而产生冲突?
Latulippe: 需要让数据使用者与数据创建者进行交流。 我认为这样可以帮助双方更加深刻地认识到数据是如何在需要它的业务流程中使用的。 以往,这些团队无法真正进行协作。 如果发生无法解决的实际冲突,通常意味着需要一个新的数据字段。 需要做的是,跟踪数据在企业中的移动,并提供相应财务支持。
例如,我们对缺少邮政编码所造成的影响进行了成本分析, 结果发现,并非所有应用系统都需要在其数据模型或数据输入屏幕中提供邮政编码。 该委员会跟踪整个流程,发现某个数据点一旦缺失,就会对公司产生巨大的成本影响。 因此,该数据点现在已成为全球范围的必填字段,在输入时会对此进行实时检查。
在治理委员会中,不同领域的人员会共同定义数据质量。 同一组数据可以具有不同的数据质量定义吗?
Latulippe: 让我们回到数据生命周期中寻找答案,使用者所定义的高质量数据以及营销需要的数据与某人应 CRM 需要尝试填入销售订单中的数据是不同的。 数据在其使用生命周期中的位置将决定每个属性所需的质量级别。 随着该生命周期从营销活动到数据保留的成熟度,以及所使用属性数量的增加,预期的数据质量也会提高。
是否要让企业的业务部门分担数据质量和治理责任? 请考虑根据您的角色获得相应级别的数据质量认证。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。