谷歌研究人员创建了号称是“学习一切的模型”,可利用多种类型的训练数据在不同的任务里训练人工智能(AI)模型。
谷歌希望旗下的Tensor2Tensor程序库可以加速深度学习的研究
谷歌研究人员和以AI为重点的谷歌大脑团队(Google Brain Team)打造的新Tensor2Tensor程序库里还包括其他工具及模块化组件,简单来说其就是一个程序库包,他们希望该程序库包可以加速深度学习的研究。
另外,该谷歌框架可望减少环境定制的一些工作,令深度学习模型可以处理各种任务。
谷歌研究人员在一篇文章里称此为“学习一切的模型”,到目前为止,尽管深度学习在语音识别、图像分类和翻译方面取得了成功,但每个模型都需针对特定的任务进行微调。
而且,各种模型通常是针对来自相同“域”的任务进行训练的,例如,一种翻译任务的训练用的是其他翻译任务。
这些因素凑在一起将减缓了深度学习的研究,并且也没有遵循人类大脑的工作原理,人类大脑能够从一个挑战中学会一些东西,并将其应用于解决新的任务。
而谷歌创建的模型是针对各种任务训练的,包括图像识别、翻译任务、图像字幕和语音识别等。
谷歌研究人员称该单一模型可以同时从多个领域学习许多的任务,而且该模型还能够传递知识。该模型能够从拥有大量训练数据的任务里学习,并将学习到知识应用到一些数据有限的任务。
Tensor2Tensor程序库由谷歌大脑团队的研究人员和工程师维护,该程序库提供了一套用于训练TensorFlow深入学习模型的开源工具。据Tensor2Tensor的GitHub网页(https://github.com/tensorflow/tensor2tensor)介绍,Tensor2Tensor库“的目标是最大限度地提高想法带宽并最大限度地减少执行延迟”。
谷歌大脑团队高级研究科学家及文章的主要作者Lukasz Kaiser做了如下解释,“Tensor2Tensor库有助于为各种机器学习应用程序创建最先进的模型,例如翻译、解析、图像字幕等等,有了Tensor2Tensor,就能快速探索各种想法。”
另外,Tensor2Tensor库还包括一个从谷歌大脑研究人员最近发表的论文里获取的数据集和模型库。
Kaiser日前还发布了用于机器翻译的BLEU基准测试结果,结果表明,Tensor2Tensor的最佳模式可提供业内最佳结果,而用的GPU数量更少,用的时间比过去未使用Tensor2Tensor的模型少很多。
Kaiser 表示,“用了Tensor2Tensor,就可以在一天内使用单个GPU得到业内最佳结果,这一点很了不起。”
Tensor2Tensor库还包括相关的数据集、模型架构、优化器、学习速率衰减方案、超参数等等,并包含这些组件之间的标准接口。
好文章,需要你的鼓励
DDN推出Infinia对象存储系统,采用键值存储架构和Beta Epsilon树数据结构,实现读写性能平衡。系统在对象列表性能上比AWS快100倍,延迟降至毫秒级,支持多租户和SLA管理。通过与英伟达合作优化RAG管道,在AWS上实现22倍性能提升并降低60%成本。
大连理工大学和浙江大学研究团队提出MoR(Mixture of Reasoning)方法,通过将多种推理策略嵌入AI模型参数中,让AI能自主选择最适合的思考方式,无需人工设计专门提示词。该方法包含思维生成和数据集构建两阶段,实验显示MoR150模型性能显著提升,比基线模型提高2.2%-13.5%,为AI推理能力发展开辟新路径。
Alpine Linux核心开发者Ariadne Conill推出了Wayback项目,这是一个实验性的X兼容层,允许使用Wayland组件运行完整的X桌面环境。该项目本质上是一个提供足够Wayland功能来托管rootful Xwayland服务器的存根合成器。与现有的XWayland不同,Wayback旨在创建一个类似X11风格的基于Wayland的显示服务器,让用户能够继续使用传统的X11窗口管理器和桌面环境,而无需重写或替换这些熟悉的工具。
剑桥大学研究团队开发了FreNBRDF技术,通过引入频率修正机制显著提升了计算机材质建模的精度。该技术采用球面谐波分析提取材质频率信息,结合自动编码器架构实现高质量材质重建与编辑。实验表明,FreNBRDF在多项指标上超越现有方法,特别在频率一致性方面改善近30倍,为游戏开发、影视制作、电商预览等领域提供了重要技术支撑。