AWS和微软将联手发布一个名为Gluon的开源深度学习库,两家公司称此举能够让更多开发者利用机器学习,这个机器学习库为开发者提供了一个接口,他们可以通过这个接口为云和移动应用打造、构建、训练和部署机器学习模型。
据称,与其他产品相比,Gluon是一个更为简洁、易于理解的编程接口,让开发者有机会快速地打造神经网络原型并进行实验,而不用牺牲性能。
Amazon AI副总裁Swami Sivasubramanian表示:“今天的现实情况是,构建和训练机器学习模型需要大量的繁重的专业知识。我们创建了Gluon接口,让构建神经网络和训练模型变得和构建一个应用一样简单。”
Gluon接口目前适用于Apache MXNet,未来版本还将支持微软Cognitive工具套件。开发者可以使用Python API和一系列预构建的神经网络组件来构建机器学习模型。
AWS和微软还发布了Gluon在GitHub上的参考规范,可让其他深度学习引擎能够整合该接口。
微软AI及研究企业副总裁Eric Boyd表示:“我们相信对于行业来说,相互合作和池化资源以打造有益于更广泛群体的技术,这是非常重要的。机器学习有能力变革我们工作、交互和交流的方式。为了实现这一点,我们需要提供适当的工具,Gluon接口就是我们在这个方向迈出的一步。”
这并不是两家科技巨头围绕AI进行的首次合作,今年8月两家公司承诺将在今年年底实现微软Cortana和Amazon Alexa之间的通信。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。