AWS和微软将联手发布一个名为Gluon的开源深度学习库,两家公司称此举能够让更多开发者利用机器学习,这个机器学习库为开发者提供了一个接口,他们可以通过这个接口为云和移动应用打造、构建、训练和部署机器学习模型。
据称,与其他产品相比,Gluon是一个更为简洁、易于理解的编程接口,让开发者有机会快速地打造神经网络原型并进行实验,而不用牺牲性能。
Amazon AI副总裁Swami Sivasubramanian表示:“今天的现实情况是,构建和训练机器学习模型需要大量的繁重的专业知识。我们创建了Gluon接口,让构建神经网络和训练模型变得和构建一个应用一样简单。”
Gluon接口目前适用于Apache MXNet,未来版本还将支持微软Cognitive工具套件。开发者可以使用Python API和一系列预构建的神经网络组件来构建机器学习模型。
AWS和微软还发布了Gluon在GitHub上的参考规范,可让其他深度学习引擎能够整合该接口。
微软AI及研究企业副总裁Eric Boyd表示:“我们相信对于行业来说,相互合作和池化资源以打造有益于更广泛群体的技术,这是非常重要的。机器学习有能力变革我们工作、交互和交流的方式。为了实现这一点,我们需要提供适当的工具,Gluon接口就是我们在这个方向迈出的一步。”
这并不是两家科技巨头围绕AI进行的首次合作,今年8月两家公司承诺将在今年年底实现微软Cortana和Amazon Alexa之间的通信。
好文章,需要你的鼓励
阿布扎比科技创新研究院团队首次发现大语言模型生成的JavaScript代码具有独特"指纹"特征,开发出能够准确识别代码AI来源的系统。研究创建了包含25万代码样本的大规模数据集,涵盖20个不同AI模型,识别准确率在5类任务中达到95.8%,即使代码经过混淆处理仍保持85%以上准确率,为网络安全、教育评估和软件取证提供重要技术支持。
国际能源署发布的2025年世界能源展望报告显示,全球AI竞赛推动创纪录的石油、天然气、煤炭和核能消耗,加剧地缘政治紧张局势和气候危机。数据中心用电量预计到2035年将增长三倍,全球数据中心投资预计2025年达5800亿美元,超过全球石油供应投资的5400亿美元。报告呼吁采取新方法实现2050年净零排放目标。
斯坦福大学研究团队首次系统比较了人类与AI在文本理解任务中的表现。通过HUME评估框架测试16个任务发现:人类平均77.6%,最佳AI为80.1%,排名第4。人类在非英语文化理解任务中显著优于AI,而AI在信息处理任务中更出色。研究揭示了当前AI评估体系的缺陷,指出AI的高分往往出现在任务标准模糊的情况下。