MongoDB Relational Migrator可借助AI将SQL转换为MongoDB Query API语法,
进一步提高关系数据库迁移的自动化水平
MongoDB Compass可根据自然语言生成查询和聚合,
助力更快速、更轻松地构建由数据驱动的应用程序
MongoDB Atlas Charts可根据自然语言构建丰富的数据可视化,
助力加速仪表板创建和商业智能
MongoDB 官方文档全新AI聊天机器人功能可解答技术问题,
助力缩短应用程序构建和故障排除所需的时间
北京,2023年9月28日——MongoDB(NASDAQ:MDB)早前在MongoDB用户大会伦敦站上宣布推出全新的智能化开发者体验,利用生成式人工智能助力开发者更快速、更轻松地在MongoDB上构建应用程序。MongoDB是世界上最受欢迎的基于文档的数据平台,数以百万计的开发者和成千上万的客户借助MongoDB构建关键业务程序。MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts、MongoDB Documentation(MongoDB 官方文档)中的全新生成式AI功能可帮助开发者减少耗费在重复性任务上的时间和精力,从而更加专注于解决难题和构建现代应用程序。欲了解关于MongoDB的更多信息,请访问mongodb.com/zh-cn。
MongoDB首席产品官Sahir Azam表示:“生成式人工智能让开发者有机会构建更好的应用程序。通过自动执行重复性任务,由AI驱动的工具和功能可以帮助开发者节省大量时间和精力,同时更快地交付更高质量的应用程序。通过将人工智能功能集成到每天都有数以百万计开发者使用的MongoDB产品和服务中,我们正在助力开发者减少耗费在低价值任务上的时间,让他们能够专注于对自身和企业更加重要的事情上,即构建和发布受终端用户青睐的现代应用程序。”
为满足客户日益增长的需求,当前企业需要构建极具吸引力的应用程序,确保应用程序能够实时响应不断变化的需求和日新月异的数据。MongoDB之所以能够成为开发者构建应用程序的首选,是因为具备灵活性、可扩展性和弹性。然而,为了有效运行由数据驱动的应用程序,根据操作数据生成可视化结果来获取洞察并制定决策,并排除数据库和应用程序异常,开发者往往需要耗费大量时间和精力来构建查询和聚合。这些任务虽然重要,但往往属于重复性的任务且耗时耗力,使开发者难以集中精力进行原型设计、推出新功能或开创全新最终用户体验。
MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts和MongoDB官方文档现已具备一套全新的生成式AI功能,有助于消除应用程序开发与现代化过程中的大量繁重工作。这些功能包括:
MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts中的全新AI驱动功能预览版现已发布。MongoDB官方文档聊天机器人现已普遍可用。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。