MongoDB Relational Migrator可借助AI将SQL转换为MongoDB Query API语法,
进一步提高关系数据库迁移的自动化水平
MongoDB Compass可根据自然语言生成查询和聚合,
助力更快速、更轻松地构建由数据驱动的应用程序
MongoDB Atlas Charts可根据自然语言构建丰富的数据可视化,
助力加速仪表板创建和商业智能
MongoDB 官方文档全新AI聊天机器人功能可解答技术问题,
助力缩短应用程序构建和故障排除所需的时间
北京,2023年9月28日——MongoDB(NASDAQ:MDB)早前在MongoDB用户大会伦敦站上宣布推出全新的智能化开发者体验,利用生成式人工智能助力开发者更快速、更轻松地在MongoDB上构建应用程序。MongoDB是世界上最受欢迎的基于文档的数据平台,数以百万计的开发者和成千上万的客户借助MongoDB构建关键业务程序。MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts、MongoDB Documentation(MongoDB 官方文档)中的全新生成式AI功能可帮助开发者减少耗费在重复性任务上的时间和精力,从而更加专注于解决难题和构建现代应用程序。欲了解关于MongoDB的更多信息,请访问mongodb.com/zh-cn。
MongoDB首席产品官Sahir Azam表示:“生成式人工智能让开发者有机会构建更好的应用程序。通过自动执行重复性任务,由AI驱动的工具和功能可以帮助开发者节省大量时间和精力,同时更快地交付更高质量的应用程序。通过将人工智能功能集成到每天都有数以百万计开发者使用的MongoDB产品和服务中,我们正在助力开发者减少耗费在低价值任务上的时间,让他们能够专注于对自身和企业更加重要的事情上,即构建和发布受终端用户青睐的现代应用程序。”
为满足客户日益增长的需求,当前企业需要构建极具吸引力的应用程序,确保应用程序能够实时响应不断变化的需求和日新月异的数据。MongoDB之所以能够成为开发者构建应用程序的首选,是因为具备灵活性、可扩展性和弹性。然而,为了有效运行由数据驱动的应用程序,根据操作数据生成可视化结果来获取洞察并制定决策,并排除数据库和应用程序异常,开发者往往需要耗费大量时间和精力来构建查询和聚合。这些任务虽然重要,但往往属于重复性的任务且耗时耗力,使开发者难以集中精力进行原型设计、推出新功能或开创全新最终用户体验。
MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts和MongoDB官方文档现已具备一套全新的生成式AI功能,有助于消除应用程序开发与现代化过程中的大量繁重工作。这些功能包括:
MongoDB Relational Migrator、MongoDB Compass、MongoDB Atlas Charts中的全新AI驱动功能预览版现已发布。MongoDB官方文档聊天机器人现已普遍可用。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。