扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
作者:赛迪网 Alice 来源:天新网 2008年3月21日
关键字: Mssql 数据库 SQL SQL Server
四 完整的Data Mining 包含哪些步骤?
以下提供一个Data Mining的进行步骤以为参考:
1. 理解业务与理解数据;
2. 获取相关技术与知识;
3. 整合与查询数据;
4. 去除错误或不一致及不完整的数据;
5. 由数据选取样本先行试验;
6. 建立数据模型
7. 实际Data Mining的分析工作;
8. 测试与检验;
9. 找出假设并提出解释;
10. 持续应用于企业流程中。
由上述步骤可看出,Data Mining牵涉了大量的准备工作与规划过程,事实上许多专家皆认为整套Data Mining的进行有80﹪的时间精力是花费在数据前置作业阶段,其中包含数据的净化与格式转换甚或表格的连结。由此可知Data Mining只是信息挖掘过程中的一个步骤而已,在进行此步骤前还有许多的工作要先完成。
五 Data Mining 运用了哪些理论与技术?
Data Mining是近年来数据库应用技术中相当热门的议题,看似神奇、听来时髦,实际上却也不是什么新东西,因其所用之诸如预测模型、数据分割,连结分析(Link Analysis)、偏差侦测(Deviation Detection)等,美国早在二次世界大战前就已应用运用在人口普查及军事等方面。
随着信息科技超乎想象的进展,许多新的计算机分析工具问世,例如关系型数据库、模糊计算理论、基因算法则以及类神经网络等,使得从数据中发掘宝藏成为一种系统性且可实行的程序。
一般而言,Data Mining的理论技术可分为传统技术与改良技术两支。传统技术以统计分析为代表,统计学内所含序列统计、概率论、回归分析、类别数据分析等都属于传统数据挖掘技术,尤其 Data Mining 对象多为变量繁多且样本数庞大的数据,是以高等统计学里所含括之多变量分析中用来精简变量的因素分析(Factor Analysis)、用来分类的判别分析(Discriminant Analysis),以及用来区隔群体的分群分析(Cluster Analysis)等,在Data Mining过程中特别常用。
类神经网络是一种仿真人脑思考结构的数据分析模式,由输入之变量与数值中自我学习并根据学习经验所得之知识不断调整参数以期建构数据的型样(patterns)。类神经网络为非线性的设计,与传统回归分析相比,好处是在进行分析时无须限定模式,特别当数据变量间存有交互效应时可自动侦测出;缺点则在于其分析过程为一黑盒子,故常无法以可读之模型格式展现,每阶段的加权与转换亦不明确,是故类神经网络多利用于数据属于高度非线性且带有相当程度的变量交感效应时。
规则归纳法是知识发掘的领域中最常用的格式,这是一种由一连串的「如果…/则…(If / Then)」之逻辑规则对数据进行细分的技术,在实际运用时如何界定规则为有效是最大的问题,通常需先将数据中发生数太少的项目先剔除,以避免产生无意义的逻辑规则。
六 Data Mining包含哪些主要功能?
Data Mining实际应用功能可分为三大类六分项来说明:Classification和Clustering属于分类区隔类;Regression和Time-series属于推算预测类;Association和Sequence则属于序列规则类。
Classification是根据一些变量的数值做计算,再依照结果作分类。(计算的结果最后会被分类为几个少数的离散数值,例如将一组数据分为 "可能会响应" 或是 "可能不会响应" 两类)。Classification常被用来处理如前所述之邮寄对象筛选的问题。我们会用一些根据历史经验已经分类好的数据来研究它们的特征,然后再根据这些特征对其他未经分类或是新的数据做预测。这些我们用来寻找特征的已分类数据可能是来自我们的现有的客户数据,或是将一个完整数据库做部份取样,再经由实际的运作来测试;譬如利用一个大型邮寄对象数据库的部份取样来建立一个Classification Model,再利用这个Model来对数据库的其它数据或是新的数据作分类预测。
Regression是使用一系列的现有数值来预测一个连续数值的可能值。若将范围扩大亦可利用LoGIStic Regression来预测类别变量,特别在广泛运用现代分析技术如类神经网络或决策树理论等分析工具,推估预测的模式已不在止于传统线性的局限,在预测的功能上大大增加了选择工具的弹性与应用范围的广度。
Time-Series Forecasting与Regression功能类似,只是它是用现有的数值来预测未来的数值。两者最大差异在于Time-Series所分析的数值都与时间有关。Time-Series Forecasting的工具可以处理有关时间的一些特性,譬如时间的周期性、阶层性、季节性以及其它的一些特别因素(如过去与未来的关连性)。
Association是要找出在某一事件或是数据中会同时出现的东西。举例而言,如果A是某一事件的一种选择,则B也出现在该事件中的机率有多少。(例如:如果顾客买了火腿和柳橙汁,那么这个顾客同时也会买牛奶的机率是85%。)
七 Data Mining在各领域的应用情形为何?
Data Mining在各领域的应用非常广泛,只要该产业拥有具分析价值与需求的数据仓储或数据库,皆可利用Mining工具进行有目的的挖掘分析。一般较常见的应用案例多发生在零售业、直效行销界、制造业、财务金融保险、通讯业以及医疗服务等。
于销售数据中发掘顾客的消费习性,并可藉由交易纪录找出顾客偏好的产品组合,其它包括找出流失顾客的特征与推出新产品的时机点等等都是零售业常见的实例;直效行销强调的分众概念与数据库行销方式在导入Data Mining的技术后,使直效行销的发展性更为强大,例如利用Data Mining分析顾客群之消费行为与交易纪录,结合基本数据,并依其对品牌价值等级的高低来区隔顾客,进而达到差异化行销的目的;制造业对Data Mining的需求多运用在品质控管方面,由制造过程中找出影响产品品质最重要的因素,以期提高作业流程的效率。
近来电话公司、信用卡公司、保险公司以及股票交易商对于诈欺行为的侦测(Fraud Detection)都很有兴趣,这些行业每年因为诈欺行为而造成的损失都非常可观,Data Mining可以从一些信用不良的客户数据中找出相似特征并预测可能的诈欺交易,达到减少损失的目的。财务金融业可以利用 Data Mining来分析市场动向,并预测个别公司的营运以及股价走向。Data Mining的另一个独特的用法是在医疗业,用来预测手术、用药、诊断、或是流程控制的效率。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者