如何在分析应用中使用数据挖掘简介

ZDNet软件频道 时间:2009-04-10 作者: | 天新网 我要评论()
本文关键词:Mssql SQL SQL Server 数据库 SQL Server
数据挖掘是SQL Server 2000中最令人激动的新功能之一。我将数据挖掘看作是一个能够自动分析数据以获取相关信息的过程,数据挖掘可以和任一关系数据库或者OLAP数据源集成使用。

下一步需要选择为预测年收入所需要用到的OLAP多维数据集中的那部分数据。选中 Customers维、Customers维中所有的层及Name层中Member属性下的所有层,如图2所示(这些都是缺省的设置)。需要注意的是,Yearly Income既是输入也是输出,这是因为我们正在训练挖掘模型。为训练挖掘模型,算法需要正确的答案。(如:现有用户的实际年收入)


(图2)

点击Next按钮,创建一个OLAP维和一个虚拟多维数据集。对话框设置按图3所示。挖掘向导模式将根据Sales多维数据集创建一个虚拟多维数据集,增加一个名为PredictIncome的新数据挖掘维,点击Next后,为建立挖掘模型起个名字并决定是否立刻执行。我们将建立的挖掘模型命名为IncomModel, 点击Save按钮并立刻执行。当点击Finish按钮后,分析服务将对数据进行处理,并在挖掘模型编辑器中显示挖掘的结果。


图3


图4
 
    图4显示的就是OLAP挖掘模式编辑器,中间的窗口显示了结果决策树的几个结点(图5显示的是一棵完整的决策树)图4右上方标题为“Content Navigator”(内容导航员)窗口用颜色表示数据密度,用图形的方式描述了整棵决策树,其中颜色越深就代表用户越多。在中间的窗口,我选择了一个结点Customers.Name.Member Card = Normal,该结点代表所有成员属性会员卡的值为Normal的用户。中间靠右的窗口显示了该类别中用户不同年份年收入的条形图。我们发现他们中的 83%的人的收入介于10000美元至30000美元之间,这就意味着会员卡值为normal可以很好地预测这一收入水平的用户。(我们对这一结论不应该感到意外,因为Member Cards属性是挖掘模型通过挖掘年收入和教育水平而创建的。)

不使用分析管理器分析多维数据集

现在假设你从客户端应用程序分析Trained Income多维数据集,不具有OLAP管理员权限来运行分析管理器(Analysis Manager),就可以用下面的多维表达查询(MDX)来得到相同的条形图信息,查询将返回每一个收入水平符合“Member Card = Normal”条件的用户编号。查询首先创建一个持有普通成员卡的用户的集合(CustMembers),然后创建新的方法来统计符合当前所选收入水平的用户有多少。

  
   WITH SET [CustMembers] as "Filter([Customers].
     [Name].Members, not IsEmpty([Customers].CurrentMember))"
   MEMBER [Measures].[Cust Count] as "Count( Filter( [CustMembers],
   [Customers].CurrentMember.Properties("Yearly Income") 
     =[Yearly Income].CurrentMember.Name))"
   SELECT { [Measures].[Cust Count] } ON COLUMNS ,
     [Yearly Income].[All Yearly Income].Children 
     ON ROWS FROM [TrainedIncome]
  WHERE ([PredictIncome].[All].[Customers.Name.Member Card = Normal] )


 

Mssql

SQL

SQL Server

数据库

SQL Server


百度大联盟认证黄金会员Copyright© 1997- CNET Networks 版权所有。 ZDNet 是CNET Networks公司注册服务商标。
中华人民共和国电信与信息服务业务经营许可证编号:京ICP证010391号 京ICP备09041801号-159
京公网安备:1101082134