至顶网软件频道消息:Salesforce研究院(Salesforce Research)创建的自然语言处理架构可以处理多种模型和任务。在通常情况下,自然语言处理(NLP)针对每种功能(如翻译、情感分析和问题和答案)都需建一个模型。
由Salesforce首席科学家Richard Socher领导的一项研究旨在完成名为自然语言 Decathlon(decaNLP)的挑战任务。decaNLP挑战涵盖了10个任务: 问题回答、机器翻译、汇总、自然语言推理、情感分析、语义角色标注、关系提取、目标导向对话、数据库查询生成和代词解析,这些任务被送至系统进行共同学习。
可以将decaNLP想象成自然语言处理瑞士军刀。如果NLP需要重复定制,规模大了以后就不能使用。 Salesforce想寻找一种通用的NLP方法,将每项任务转换为问题回答格式并进行共同训练。
Socher表示,该方法融合了深度学习和NLP,可将问题的讨论转向围绕元架构的讨论。他补充表示,架构方法也可以用来防止NLP函数分层的模型蔓延。
Socher表示,“这个项目可以即时用在一些有用的应用上,因为项目是个单一部署模型,而且易于维护。我们将一堆工具整合在一起。”
Salesforce可能会在爱因斯坦分析及各种云计算的产品路线图里使用decaNLP方法。
decaNLP可与多任务问答网络结合在一起,无需任何特定模型就可以针对所有任务进行共同学习。该网络还可以通过新任务相关的说明进行自适应调变。
下图是多任务问答网络图。
另外,Salesforce 研究院还完成了处理数据集、训练和评估模型的代码,并定义了一个名为decaScore的评分。
用decaNLP系统训练过的NLP理论上可以为聊天机器人提供更好的框架及更好地提供客户服务交换中的任何信息。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。