UiPath全球制造业负责人Sebastian Seutter

制造业实现自动化的动力非常简单。自动化模拟了人类工作,这意味着人类可以专注于制造业价值链的其他领域。
自动化首先被引入到制造业的生产领域,以减少员工数量。实体机器人加速了工厂产出,让员工能够专注于高价值任务,如采购、供应链和运输。
直到现在,这个系统一直在成功运作。但随着分析技术、人工智能(AI)和软件自动化的引入,制造商现在可以在整个价值链中使用这种先进的技术来提高生产力和促进业务增长。被称为机器人流程自动化(RPA)的软件自动化可以模拟人类在计算机上执行的重复、枯燥的任务,让员工腾出时间从事更有意义的任务。
在过去十年中,AI和自动化被用于面向消费者的产品。例如,Netflix使用AI预测消费者的内容偏好,亚马逊使用AI来更好地理解搜索查询,Uber则使用AI管理骑手和司机的物流。
过去五年,RPA+AI模式越来越多的在工业企业中实施。Gartner的预测表明,到2022年,90%的大型企业将部署某种形式的RPA,其中80%的企业将引入AI。
事实证明,在制造业中应用RPA对企业的整体绩效有重大影响。根据全球灯塔工厂网络(麦肯锡和世界经济论坛)的一份报告,早期采用RPA和AI等技术的制造商报告称,他们的产品上市时间加快了30-90%,工厂产量增加高达200%。与大众的理解相反,RPA机器人可以部署在每个业务部门,包括客户服务、销售、财务和研发。
在供应链中,RPA可以实现采购订单管理以及招投标过程的自动化。它可以在工厂层面简化订单录入、发票和货物进口流程。在订单管理层面,RPA还可以实现订单交付状态、交货期报告和中转运输处理。
不仅如此,自动化通过将员工从重复性工作中解放出来,为他们提供了更多时间来开发创意,专注于解决问题和寻找解决方案等高价值任务。这不仅可以赋能员工,还可以提高工作满意度、生产效率以及客户满意度。
毫无疑问,RPA、高级分析和AI将继续改变制造业。
虽然制造商正在开始应用这些技术,但大部分还没有意识到在整个价值链中利用软件自动化的真正价值。
该行业正在经历持续的变革,而运营能力将始终是一个差异化因素。通过在整个价值链上发现自动化机会,制造商可以提高整个企业的效能和生产力,从而获得竞争优势。
好文章,需要你的鼓励
2024年10月8日,Geoffrey Hinton(杰弗里·辛顿)因在人工神经网络领域的开创性工作获得诺贝尔物理学奖。
NVIDIA联合多伦多大学开发的ChronoEdit系统通过将图像编辑重新定义为视频生成问题,让AI具备了物理常识。该系统引入时间推理机制,能够想象编辑的完整变化过程,确保结果符合物理规律。在专业测试中,ChronoEdit超越了所有开源竞争对手,特别在需要物理一致性的场景中表现突出,为自动驾驶、机器人等领域的应用提供了重要技术突破。
这项研究提出了MITS框架,使用信息论中的点互信息指导AI推理过程,解决了传统树搜索方法计算成本高、评估标准模糊的问题。通过动态采样和加权投票机制,MITS在多个推理数据集上显著超越现有方法,同时保持高效的计算性能,为AI推理技术开辟了新方向。