UiPath全球制造业负责人Sebastian Seutter

制造业实现自动化的动力非常简单。自动化模拟了人类工作,这意味着人类可以专注于制造业价值链的其他领域。
自动化首先被引入到制造业的生产领域,以减少员工数量。实体机器人加速了工厂产出,让员工能够专注于高价值任务,如采购、供应链和运输。
直到现在,这个系统一直在成功运作。但随着分析技术、人工智能(AI)和软件自动化的引入,制造商现在可以在整个价值链中使用这种先进的技术来提高生产力和促进业务增长。被称为机器人流程自动化(RPA)的软件自动化可以模拟人类在计算机上执行的重复、枯燥的任务,让员工腾出时间从事更有意义的任务。
在过去十年中,AI和自动化被用于面向消费者的产品。例如,Netflix使用AI预测消费者的内容偏好,亚马逊使用AI来更好地理解搜索查询,Uber则使用AI管理骑手和司机的物流。
过去五年,RPA+AI模式越来越多的在工业企业中实施。Gartner的预测表明,到2022年,90%的大型企业将部署某种形式的RPA,其中80%的企业将引入AI。
事实证明,在制造业中应用RPA对企业的整体绩效有重大影响。根据全球灯塔工厂网络(麦肯锡和世界经济论坛)的一份报告,早期采用RPA和AI等技术的制造商报告称,他们的产品上市时间加快了30-90%,工厂产量增加高达200%。与大众的理解相反,RPA机器人可以部署在每个业务部门,包括客户服务、销售、财务和研发。
在供应链中,RPA可以实现采购订单管理以及招投标过程的自动化。它可以在工厂层面简化订单录入、发票和货物进口流程。在订单管理层面,RPA还可以实现订单交付状态、交货期报告和中转运输处理。
不仅如此,自动化通过将员工从重复性工作中解放出来,为他们提供了更多时间来开发创意,专注于解决问题和寻找解决方案等高价值任务。这不仅可以赋能员工,还可以提高工作满意度、生产效率以及客户满意度。
毫无疑问,RPA、高级分析和AI将继续改变制造业。
虽然制造商正在开始应用这些技术,但大部分还没有意识到在整个价值链中利用软件自动化的真正价值。
该行业正在经历持续的变革,而运营能力将始终是一个差异化因素。通过在整个价值链上发现自动化机会,制造商可以提高整个企业的效能和生产力,从而获得竞争优势。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。