扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
这一章主要是说Runtime Semantics执行期语义学。
这是我们平时写的程序片段:
Matrix identity; //一个全局对象 Main() { Matrix m1=identity; …… return 0; } |
很常见的一个代码片段,雷神从来没有考虑过identity如何被构造,或者如何被销毁。因为它肯定在Matrix m1=identity之前就被构造出来了,并且在main函数结束前被销毁了。我们不用考虑这些问题,好象C++就应该这样。但这本书是研究C++底层机制的。既然我们在看这本书,说明我们希望了解C++的编译器又做了那些大量的工作,使得我们可以这样使用对象。
在C++程序中所有的全局对象都被放在data segment中,如果明确赋值,则对象以该值为初值,否则所配置到内存内容为0。也就是说,如果我们有以下定义
Int v1=1024;
Int v2;
则v1和v2都被配置于data segment,v1值为1024,v2值为0。(雷神在VC6环境用MFC编程时中发现如果int v2;v2的值不为0,而是-8,不知为什么?编译器造成的?)。
如果有一个全局对象,并且这个对象有构造函数和析构函数的话,它需要静态的初始化操作和内存释放工作,C++是一种跨平台的编程语言,因此它的编译器需要一种可以移植的静态初始化和内存释放的方法。下面便是它的策略。
1、为每一个需要静态初始化的档案产生一个_sit()函数,内带构造函数或内联的扩展。
2、为每一个需要静态的内存释放操作的文件中,产生一个_std()函数,内带析构函数或内联的扩展。
3、提供一个_main()函数,用来调用所有的_sti()函数,还有一个exit()函数调用所有的_std()函数。
侯先生说:
Sit可以理解成static initialization的缩写。
Std可以理解成static deallocation的缩写。
那么main函数会被编译器变成这样:
Matrix identity; //一个全局对象 Main() { _main();//对所有的全局对象做static initialization动作。 Matrix m1=identity; …… exit();//对所有的全局对象做static deallocation动作。 } 其中_main()会有一个对identity对象的静态初始化的_sti函数,象下面伪码这样: // matrix_c是文件名编码_identity表示静态对象,这样能够保证向执行文件提供唯一的识别符号 _sti__matrix_c_identity() { identity.Matrix:: Matrix(); //这就是静态初始化 } |
相应的在exit()函数也会有一个_std_matrix_c_identity(),来进行static deallocation动作。
但是被静态初始化的对象有一些缺点,在使用异常时,对象不能被放置在try区段内。还有对象的相依顺序引出的复杂度,因此不建议使用需要静态初始化的全局对象。
局部静态对象在C++底层机制是如何构造和在内存中销毁的呢?
1、导入一个临时对象用来保护局部静态对象的初始化操作。
2、第一次处理时,临时对象为false,于是构造函数被调用,然后临时对象被改为true.
3、临时对象的true或者false便成为了判断对象是否被构造的标准。
4、根据判断的结果决定对象的析构函数是否执行。
如果一个类定义了构造函数或者析构函数,则当你定义了一个对象数组时,编译器会通过运行库将你的定义进行加工,例如:
point knots[10]; //我们的定义 vec_new(&knots,sizeof(point),10,&point::point,0); //编译器调用vec_new()操作。 |
下面给出vec_new()原型,不同的编译器会有差别。
void * vec_new( void *array, //数组的起始地址 size_t elem_size, //每个对象的大小 int elem_count, //数组元素个数 void(*constructor)(void*), void(*destructor)(void* ,char) ) 对于明显获得初值的元素,vec_new()不再有必要,例如: point knots[10]={ Point(), //knots[0] Point(1.0,1.0,0.5), //knots[1] -1.0 //knots[2] }; 会被编译器转换成: //C++伪码 Point::Point(&knots[0]); Point::Point(&knots[1],1.0,1.0,0.5); Point::Point(&knots[2],-1.0,0.0,0.0); vec_new(&knots,sizeof(point),10,&point::point,0); //剩下的元素,编译器调用vec_new()操作。 |
怎么样,很神奇吧。
当编译一个C++程序时,计算机的内存被分成了4个区域,一个包括程序的代码,一个包括所有的全局变量,一个是堆栈,还有一个是堆(heap),我们称堆是自由的内存区域,我们可以通过new和delete把对象放在这个区域。你可以在任何地方分配和释放自由存储区。但是要注意因为分配在堆中的对象没有作用域的限制,因此一旦new了它,必须delete它,否则程序将崩溃,这便是内存泄漏。(C#已经通过内存托管解决了这一令人头疼的问题)。C++通过new来分配内存,new的参数是一个表达式,该表达式返回需要分配的内存字节数,这是我以前掌握的关于new的知识,下面看看通过这本书,使我们能够更进一步的了解到些什么。
Point3d *origin=new Point3d; //我们new 了一个Point3d对象
编译器开始工作,上面的一行代码被转换成为下面的伪码:
Point3d * origin; If(origin=_new(sizeof(Point3d))) { try{ origin=Point3d::Point3d(origin); } catch(…){ _delete(origin); throw; } } |
而delete origin;
会被转换成(雷神将书上的代码改为exception handling情况):
if(origin!=0){ try{ Point3d::~Point3d(origin); _delete(origin); catch(…){ _delete(origin); //不知对否? throw; } } |
一般来说对于new的操作都直截了当,但语言要求每一次对new的调用都必须传回一个唯一的指针,解决这个问题的办法是,传回一个指针指向一个默认为size=1的内存区块,实际上是以标准的C的malloc()来完成。同样delete也是由标准C的free()来完成。原来如此。
最后这篇笔记再说说临时对象的问题。
T operator+(const T&,const T&); //如果我们有一个函数
T a,b,c; //以及三个对象:
c=a+b;
//可能会导致临时对象产生。用来放置a+b的返回值。然后再由 T的copy constructor把临时对象当作c的初值。也有可能直接由拷贝构造将a+b的值放到c中,这时便不需要临时对象。另外还有一种可能通过操作符的重载定义,经named return value优化也可以获得c对象。这三种方法结果一样,区别在于初始化的成本。对临时对象书上有很好的总结:
在某些环境下,有processor产生的临时对象是有必要的,也是比较方便的,这样的临时对象由编译器决定。
临时对象的销毁应该是对完整表达式求值过程的最后一个步骤。
因为临时对象是根据执行期语义有条件的产生,因此它的生命规则就显得很复杂。C++标准要求凡含有表达式执行结果的临时对象,应该保留到对象的初始化操作完成为止。当然这样也会有例外,当一个临时对象被一个引用绑定时,对象将残留,直到被初始化的引用的生命结束,或者超出临时对象的作用域。
好了今天很有收获,马上就会结束这本书的学习了。下一章的标题 站在对象模型的尖端 我有些迫不及待了。
婵″倹鐏夐幃銊╂姜鐢瓕鎻╅崚鍥╂畱閹厖绨$憴顤廡妫板棗鐓欓張鈧弬棰侀獓閸濅椒绗岄幎鈧張顖欎繆閹垽绱濋柇锝勭疄鐠併垽妲勯懛鎶姐€婄純鎴炲Η閺堫垶鍋栨禒璺虹殺閺勵垱鍋嶉惃鍕付娴f娊鈧柨绶炴稊瀣╃閵嗭拷