科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道基础软件前K条最短路径算法

前K条最短路径算法

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

尽管数据结构书上有最短路径的经典算法,可中文书籍和期刊上却鲜见求解前K条最短路径算法的文章,于是自以为终于找到了一个可以自主设计的算法,思索多日,辛苦之中未有良策,只好作罢。

作者:如水随风 来源:CSDN 2008年3月22日

关键字: 算法 路径 C++ C Linux

  • 评论
  • 分享微博
  • 分享邮件

一、算法说明

 Deletion Algorithm删除算法的核心是通过在有向图中已有的最短路径上删除某条弧,并寻找替换的弧来寻找下一条可选的最短路径。删除算法实际上是通过在有向图中增加附加节点和相应的弧来实现的。算法描述如下:

 

1.利用Dijkstra算法求得有向图(N,A)中以开始节点s为根的最短路径树(注意,这里的最短路径树并不是最小生成树,因为Dijkstra算法并不保证能生成最小生成树),标记从开始节点s到结束节点t之间的最短路径为pkk=1

2.如果k小于要求的最短路径的最大数目K,并且仍然有候选路径存在,令当前路径p=pk3。否则,程序结束。

3.找出当前路径p中从第一个节点开始的入度大于1的第一个节点,记为nh。如果nh扩展节点nh不在节点集N中,则转4,否则找出路径pnh后面所有节点中,其对应的扩展节点不在N中的第一个节点,记为ni,转5

4.为节点nh构建一个扩展节点nh,并把其添加到集合N中,同时从图(N,A)中所有nh前驱节点连接一条到nh的弧,弧对应的权重不变,添加这些弧到弧集A中,但nhp中的前一个节点nh-1除外。计算从开始节点snh的最短路径,并记ninh+1

5.对于p中从ni开始的所有后续节点,不妨记为nj,依次执行如下操作:

5.1 添加nj的扩展节点nj到节点集合N中。

5.2 除了路径pnj的前一个节点nj-1外,分别连接一条从nj前驱节点到其扩展节点nj的弧,弧上的权值保持不变,并把这些弧添加到弧集A中。另外,如果pnj的前一个节点nj-1具有扩展节点nj-1的话,也需要连接一条从nj-1nj的弧,权值和弧(nj-1 , nj)的权值相等。

5.3 计算从开始节点snj的最短路径。

6.更新当前最短路径树,求得从开始节点s到结束节点的当前扩展节点t(k)’之间的最短路径为第k条最短路径,令k=k+1,转2继续。

 

在上述步骤456中均需要计算从开始节点到当前扩展节点的最短路径,因为程序开始时便生成了以开始节点为根的最短路径树,那么只要在扩充节点时,记录下每个新节点相对于开始节点的最短路径中其前一个节点编号以及从开始节点到当前节点的最短路径长度,就可以很容易求得任意时刻有向图中从开始节点到结束节点(或其扩充节点)之间的最短路径。 
        扩展节点:上一条最短路径上的节点可能会在求取下一条最短路径的过程中进行扩展 ,也就是在上次节点集合的基础上增加相应的新节点,这些新的节点均称为扩展节点,一个扩展节点仍然可能会在求取下一条最短路径的时候进行扩展。表现在示例图中就是在一个节点标记后面加一撇表示是在原始节点上扩展,加两撇表示是在上次扩展节点上再扩展,依次类推。
        前驱节点:就是最短路径中某个节点的前一个节点。

 

二、算法示例
 
下面以图1所示网络图为例,根据上述算法,分别求得其第k条最短路径,求解过程中有向图的变化情况如图15所示,粗体路径表示当前状态下的最短路径,不同类型的圈表示不同阶段生成的节点

 

图1  k=1时的最短路径

图2  k=2时的最短路径

图3  k=3时的最短路径

图4  k=4时的最短路径

图5  k=5时的最短路径

 

  参考文献:[这个算法在70年代就提出来了,其间历经完善,发表的论文也是五花八门,为了能让初次接触此算法的人有个系统的认识,我这里列举了这个算法在近10多年发展过程中几篇有代表性的论文。]

1. J.A. Azevedo, J.J.E.R.S. Madeira, E.Q.V. Martins and F.M.A. Pires, A shortest paths ranking algorithm, (1990), Proceedings of the Annual Conference AIRO'90, Models and Methods for Decision Support, Operational Research Society of Italy, 1001-1011.

90这篇论文阐述了基于删除算法(deletion algorithm)的原理及方法,并指出了解决此类问题的三类算法,对其中删除算法以及基于最优化原理(Principle of Optimality)的算法进行了实验比较。

2. E.Q.V. Martins and J.L.E. Santos. A new shortest paths ranking algorithm. Investigacao Operacional, 20:(1):47-62,2000.

Martins在他99年这篇文章中对删除算法进行了改进,提出了MS Algorithm,实际上除了数据结构上的变化外,算法没有做实质性的改动。不过对于要从实现上来优化算法的人来说,当然是值得一看的。

3. E.Q.V. Martins. A new improvement for a k shortest paths algorithm. 2000。(忘了出处了,不好意思)

Martins随后又在他的这篇论文中改进了MS Algorithm,并依次详细列举了对早期的删除算法的逐步改进过程,所以这篇文章也是值得一读的。同样,这次改进也是从数据结构角度来改进算法效率的。

4.  Victor M. Jimenez and Andres Marzal. Computing the k shortest paths: A new algorithm and a experimental comparison. 1999. (忘了出处了,不好意思)

终于在这篇文章中有人提出了新的算法--递归枚举算法(REA, Recursive Enumeration Algorithm)。论文中分别对新的算法和Martins的算法MSA以及另外一个叫做Eppstein的人的算法(EA)进行了详细的实验比较。我之所以选择Martins的算法也是因为这篇文章对这些算法的对比实验表明,MSA算法在节点小于2000的情况下表现不错,加之MSA简明易懂并且处在不停的完善中:)。

 下面是其他相关的论文,好多哦,不过还是建议你访问Martins教授的网站。

Copyright@戴维 2006.5  于北京

相关论文:
[1] A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum weight K-link path in graphs
with Monge property and applications. Proc. 9th Symp. Computational Geometry, pp. 189–197.
Assoc. for Computing Machinery, 1993.
[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the shortest path
problem. J. Assoc. Comput. Mach. 37:213–223. Assoc. for Computing Machinery, 1990.
[3] J. A. Azevedo, M. E. O. Santos Costa, J. J. E. R. Silvestre Madeira, and E. Q. V. Martins. An
algorithm for the ranking of shortest paths. Eur. J. Operational Research 69:97–106, 1993.
[4] A. Bako. All paths in an activity network. Mathematische Operationsforschung und Statistik
7:851–858, 1976.
[5] A. Bako and P. Kas. Determining the k-th shortest path by matrix method. Szigma 10:61–66,
1977. In Hungarian.
[6] R. E. Bellman. On a routing problem. Quart. Appl. Math. 16:87–90, 1958.
[7] A.W. Brander and M. C. Sinclair. A comparative study of k-shortest path algorithms. Proc. 11th
UK Performance Engineering Worksh. for Computer and Telecommunications Systems, September
1995.
[8] T. H. Byers and M. S.Waterman. Determining all optimal and near-optimal solutions when solving
shortest path problems by dynamic programming. Operations Research 32:1381–1384, 1984.
[9] P. Carraresi and C. Sodini. A binary enumeration tree to find K shortest paths. Proc. 7th
Symp. Operations Research, pp. 177–188. Athen¨aum/Hain/Hanstein, Methods of Operations Research
45, 1983.
[10] G.-H. Chen and Y.-C. Hung. Algorithms for the constrained quickest path problem and the enumeration
of quickest paths. Computers and Operations Research 21:113–118, 1994.
[11] Y. L. Chen. An algorithm for finding the k quickest paths in a network. Computers and Operations
Research 20:59–65, 1993.
[12] Y. L. Chen. Finding the k quickest simple paths in a network. Information Processing Letters
50:89–92, 1994.
[13] E. I. Chong, S. R. Maddila, and S. T. Morley. On finding single-source single-destination k shortest
paths. Proc. 7th Int. Conf. Computing and Information, July 1995.jci/papers/icci95/A206/P001.html.
[14] A. Consiglio and A. Pecorella. Using simulated annealing to solve the K-shortest path problem.
Proc. Conf. Italian Assoc. Operations Research, September 1995.
[15] Y. Dai, H. Imai, K. Iwano, and N. Katoh. How to treat delete requests in semi-online problems.
Proc. 4th Int. Symp. Algorithms and Computation, pp. 48–57. Springer Verlag, Lecture Notes in
Computer Science 762, 1993.
[16] M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher dimensions. Computational
Geometry Theory and Applications 5:277–291, 1996.
[17] S. E. Dreyfus. An appraisal of some shortest path algorithms. Operations Research 17:395–412,
1969.
[18] El-Amin and Al-Ghamdi. An expert system for transmission line route selection. Int. Power
Engineering Conf, vol. 2, pp. 697–702. Nanyang Technol. Univ, Singapore, 1993.
[19] D. Eppstein. Finding common ancestors and disjoint paths in DAGs. Tech. Rep. 95-52, Univ. of
California, Irvine, Dept. Information and Computer Science, 1995.
[20] D. Eppstein. Ten algorithms for Egyptian fractions. Mathematica in Education and Research
4(2):5–15, 1995. [21] D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsification. Tech. Rep. 93-20, Univ. of
California, Irvine, Dept. Information and Computer Science, 1993. TR/UCI:ICS-TR-93-20.
[22] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – A technique for speeding
up dynamic graph algorithms. Proc. 33rd Symp. Foundations of Computer Science, pp. 60–
69. IEEE, 1992.
[23] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ,
1962.
23
[24] B. L. Fox. k-th shortest paths and applications to the probabilistic networks. ORSA/TIMS Joint
National Mtg., vol. 23, p. B263, 1975.
[25] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. Proc. 32nd Symp. Foundations of Computer Science, pp. 632–641. IEEE, 1991.
[26] G. N. Frederickson. An optimal algorithm for selection in a min-heap. Information and Computation
104:197–214, 1993.
[27] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization
algorithms. J. Assoc. Comput. Mach. 34:596–615. Assoc. for Computing Machinery, 1987.
[28] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. Proc. 31st Symp. Foundations of Computer Science, pp. 719–725. IEEE, 1990.
[29] A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Computing
24(3):494–504. Soc. Industrial and Applied Math., June 1995.
[30] V. Hatzivassiloglou and K. Knight. Unification-based glossing. Proc. 14th Int. Joint Conf.
Artificial Intelligence, pp. 1382–1389. Morgan-Kaufmann, August 1995. natural-language/mt/ijcai95-glosser.ps.
[31] G. J. Horne. Finding the K least cost paths in an acyclic activity network. J. Operational Research
Soc. 31:443–448, 1980.
[32] L.-M. Jin and S.-P. Chan. An electrical method for finding suboptimal routes. Int. Symp. Circuits
and Systems, vol. 2, pp. 935–938. IEEE, 1989.
[33] D. B. Johnson. A priority queue in which initialization and queue operations take O.log log D/
time. Mathematical Systems Theory 15:295–309, 1982.
[34] N. Katoh, T. Ibaraki, and H. Mine. An O.Kn2/ algorithm for K shortest simple paths in an undirected
graph with nonnegative arc length. Trans. Inst. Electronics and Communication Engineers
of Japan E61:971–972, 1978.
[35] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple paths. Networks
12(4):411–427, 1982.
[36] P. N. Klein, S. Rao, M. H. Rauch, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. Proc. 26th Symp. Theory of Computing, pp. 27–37. Assoc. for Computing Machinery,
1994.
[37] N. Kumar and R. K. Ghosh. Parallel algorithm for finding first K shortest paths. Computer
Science and Informatics 24(3):21–28, September 1994.
[38] A. G. Law and A. Rezazadeh. Computing the K-shortest paths, under nonnegative weighting.
Proc. 22nd Manitoba Conf. Numerical Mathematics and Computing, pp. 277–280, Congr. Numer.
92, 1993.
[39] E. L. Lawler. A procedure for computing the K best solutions to discrete optimization problems
and its application to the shortest path problem. Management Science 18:401–405, 1972.
24
[40] E. L. Lawler. Comment on computing the k shortest paths in a graph. Commun. Assoc. Comput.
Mach. 20:603–604. Assoc. for Computing Machinery, 1977.
[41] E. Q. V. Martins. An algorithm for ranking paths that may contain cycles. Eur. J. Operational
Research 18(1):123–130, 1984.
[42] S.-P. Miaou and S.-M. Chin. Computing k-shortest path for nuclear spent fuel highway transportation.
Eur. J. Operational Research 53:64–80, 1991.
[43] E. Minieka. On computing sets of shortest paths in a graph. Commun. Assoc. Comput. Mach.
17:351–353. Assoc. for Computing Machinery, 1974.
[44] E. Minieka. The K-th shortest path problem. ORSA/TIMS Joint National Mtg., vol. 23, p. B/116,
1975.
[45] E. Minieka and D. R. Shier. A note on an algebra for the k best routes in a network. J. Inst.
Mathematics and Its Applications 11:145–149, 1973.
[46] D. Naor and D. Brutlag. On near-optimal alignments of biological sequences. J. Computational
Biology 1(4):349–366, 1994. .
[47] A. Perko. Implementation of algorithms for K shortest loopless paths. Networks 16:149–160,
1986.
[48] Y. Perl and Y. Shiloach. Finding two disjoint paths between two pairs of vertices in a graph. J.
Assoc. Comput. Mach. 25:1–9. Assoc. for Computing Machinery, 1978.
[49] J. B. Rosen, S.-Z. Sun, and G.-L. Xue. Algorithms for the quickest path problem and the enumeration
of quickest paths. Computers and Operations Research 18:579–584, 1991.
[50] E. Ruppert. Finding the k shortest paths in parallel. Proc. 14th Symp. Theoretical Aspects of
Computer Science, February 1997.
[51] T. Shibuya. Finding the k shortest paths by AI search techniques. Cooperative Research Reports
in Modeling and Algorithms 7(77):212–222. Inst. of Statical Mathematics, March 1995.
[52] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Finding a realistic
detour by AI search techniques. Proc. 2nd Intelligent Transportation Systems, vol. 4, pp. 2037–
2044, November 1995.ITS%95/its.ps.gz.
[53] T. Shibuya and H. Imai. Enumerating suboptimal alignments of multiple biological sequences
efficiently. Proc. 2nd Pacific Symp. Biocomputing, pp. 409–420, January 1997. stanford.edu/people/altman/psb97/shibuya.pdf.
[54] T. Shibuya and H. Imai. New flexible approaches for multiple sequence alignment. Proc. 1st
Int. Conf. Computational Molecular Biology, pp. 267–276. Assoc. for Computing Machinery,
January 1997..
[55] T. Shibuya, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku. Detour queries in geographical
databases for navigation and related algorithm animations. Proc. Int. Symp. Cooperative
Database Systems for Advanced Applications, vol. 2, pp. 333–340, December 1996. http:
//naomi.is.s.u-tokyo.ac.jp/papers/databases/codas96.ps.gz.
25
[56] D. R. Shier. Algorithms for finding the k shortest paths in a network. ORSA/TIMS Joint National
Mtg., p. 115, 1976.
[57] D. R. Shier. Iterative methods for determining the k shortest paths in a network. Networks
6(3):205–229, 1976.
[58] D. R. Shier. On algorithms for finding the k shortest paths in a network. Networks 9(3):195–214,
1979.
[59] C. C. Skicism and B. L. Golden. Solving k-shortest and constrained shortest path problems ef-
ficiently. Network Optimization and Applications, pp. 249–282. Baltzer Science Publishers, Annals
of Operations Research 20, 1989.
[60] K. Sugimoto and N. Katoh. An algorithm for finding k shortest loopless paths in a directed network.
Trans. Information Processing Soc. Japan 26:356–364, 1985. In Japanese.
[61] J. W. Suurballe. Disjoint paths in a network. Networks 4:125–145, 1974.
[62] R. E. Tarjan. Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series
in Applied Mathematics 44. Soc. Industrial and Applied Math., 1983.
[63] R. Thumer. A method for selecting the shortest path of a network. Zeitschrift f¨ur Operations
Research, Serie B (Praxis) 19:B149–153, 1975. In German.
[64] M. S. Waterman. Sequence alignments in the neighborhood of the optimum. Proc. Natl. Acad.
Sci. USA 80:3123–3124, 1983.
[65] M. M. Weigand. A new algorithm for the solution of the k-th best route problem. Computing
16:139–151, 1976.
[66] A. Wongseelashote. An algebra for determining all path-values in a network with application to
k-shortest-paths problems. Networks 6:307–334, 1976.
[67] A. Wongseelashote. Semirings and path spaces. Discrete Mathematics 26:55–78, 1979.
[68] J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science 17:712–716,
1971.
[69] J. Y. Yen. Another algorithm for finding the K shortest-loopless network paths. Proc. 41st Mtg.
Operations Research Society of America, vol. 20, p. B/185, 1972.
[70] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673, April 1999.

    • 评论
    • 分享微博
    • 分享邮件
    闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簻椤掋垺銇勯幇顏嗙煓闁哄被鍔戦幃銏ゅ传閸曟垯鍨介弻锝夘敇閻曚焦鐤佸Δ鐘靛仦閻楁洝褰佸銈嗗坊閸嬫挸鈹戦檱閸嬫劗妲愰幒妤€绠涙い鎾楀嫮鏉归梻浣告惈閻鎹㈠┑鍡欐殾闁割偅娲栭悡娑樏归敐澶嬫暠闁活偄绻樺缁樻媴閸涘﹥鍎撳銈嗗灥閹虫﹢寮绘繝鍥ㄦ櫜濠㈣泛锕ㄩ幗鏇㈡⒑閸濆嫭绁紒杈ㄦ礋閹潡鍩€椤掑嫭鐓熼幖鎼灣缁夐潧霉濠婂懎浠︾紒鍌涘浮閹瑩顢楅崒婊呮婵犵數鍋涢悧鍡涙倶濠靛鍊堕柣妯肩帛閻撳繘鏌涢銈呮瀾闁稿﹥鍔楅埀顒侇問閸犳牠鈥﹀畡閭﹀殨闁圭虎鍠楅弲顒勬煕閺囥劌骞楁繝銏″灴濮婅櫣鎷犻幓鎺戞瘣缂傚倸绉村Λ娆戠矉瀹ュ鍐€妞ゆ挾鍋熼敍娑㈡⒑鐟欏嫬绀冩い鏇嗗洤绀冮柍褜鍓欓—鍐Χ閸℃ê钄奸梺鍛婃煥濞撮鍒掑▎鎺旂杸婵炴垶鐟㈤幏娲煟閻樺厖鑸柛鏂胯嫰閳诲秹骞囬悧鍫㈠幍闂佸憡鍨崐鏍偓姘炬嫹

    濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣濠垫劖缍楅梺閫炲苯澧柛濠傛贡缁骞掗弬鍝勪壕闁挎繂绨肩花浠嬫煕閺冩挾鐣辨い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵鈽夐姀鈥充簻闂備礁鐏濋鍛閹绢喗鈷戠紒顖涙礃閺夊綊鏌涚€n偅灏い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟绋垮⒔濡叉劙骞橀幇浣告倯闂佸憡绮岄崯鎶藉触椤愨懡鏃堟偐闂堟稐绮堕梺鍝ュ櫏閸嬪鎮橀幒妤佺厽闁绘ê寮剁粚鍧楁倶韫囨梻鎳呯紒顕嗙秮閹瑩鎮滃Ο閿嬪闁荤喐绮庢晶妤冩暜閹烘挾顩插ù鐓庣摠閻撴洟鏌熼幆褜鍤熸繛鍙夋尦閺岀喖顢欓挊澶婂Б闁绘挶鍊栭妵鍕疀閹炬潙娅濋梺褰掓敱濡炶棄顫忔繝姘<婵ê宕·鈧梻浣告啞椤ㄥ棗煤閻旈鏆﹀┑鍌溓瑰敮闂侀潧锛忛崟顓炲及婵犵數濮烽弫鍛婃叏閹绢喗鏅濋柕鍫濇礌閸嬫挸顫濋悡搴$睄閻庤娲╃紞鈧紒鐘崇洴瀵噣宕掑⿰鍛潓婵犵數濮烽弫鍛婃叏閹绢喖纾圭紓浣股戝▍鐘崇箾閹存瑥鐏柣鎾存礋閹鏁愰崘銊ヮ瀳婵犵鈧尙鐭欓柡灞炬礋瀹曟儼顦叉い蹇e幘閳ь剚顔栭崰鏇犲垝濞嗘劒绻嗘慨婵嗙焾濡插綊姊洪柅鐐茶嫰婢ь垶鎮介銈囩瘈鐎殿喖顭烽幃銏ゅ礂閻撳海妾┑鐘灱濞夋盯鏁冮妷銉㈡灁濠电姵纰嶉埛鎴︽煕濠靛棗顏柣蹇涗憾閺屾盯鎮╁畷鍥р拰濡ょ姷鍋涢崯顐︺偑娴兼潙閱囨繝闈涚墕楠炴劙姊绘担鍛靛綊寮甸鍌滅煓闁规儳绠嶆禍褰掓倵閿濆骸鏋熼柣鎾跺枛楠炴牕菐椤掆偓閳ь兙鍊曞玻鍧楀箛椤撶姷顔曢梺鍛婄懃椤ャ垽顢旈崼鐔蜂患濠电娀娼ч悧蹇涙儗濞嗘挻鍋i柟顓熷笒婵¤姤绻涢崼銉х暫婵﹥妞藉畷婊堝箵閹哄秶鍑规繝鐢靛仜瀵爼鎮ч悩璇茬畺闁炽儲鏋煎Σ鍫ユ煏韫囥儳纾块柛姗€浜堕弻锝堢疀閺囩偘绮舵繝鈷€鍌滅煓闁诡垰鐬奸埀顒婄秵閸嬪棛绮绘ィ鍐╃厱妞ゆ劑鍊曢弸鎴︽煕婵犲啫濮堥柟渚垮妽缁绘繈宕熼鐐殿偧闂備胶鎳撻崲鏌ュ箠閹邦喖鍨濋柣銏㈩暯閸嬫捇鏁愭惔婵堝嚬闂佷紮绲奸崡鍐差潖缂佹ɑ濯撮悷娆忓娴犫晠姊洪崨濠冪叆妞ゆ垵顦悾鐑芥晸閻樿尙顦ㄩ梺鑲┾拡閸撴艾鈻撴ィ鍐┾拺闂傚牊绋撶粻鐐烘煕婵犲啯绀嬬€规洘锕㈤崺鈧い鎺嗗亾妞ゎ亜鍟存俊鍫曞幢濡も偓椤洭姊虹粙鍧楊€楃€规洦鍓熼幆鍐敆閸曨兘鎷婚梺绋挎湰閻熝囧礉瀹ュ鍊电紒妤佺☉閹虫劙鎯屽▎鎾寸厵閻庣數枪琚ラ梺绋款儐閹告悂锝炲┑瀣亗閹艰揪绱曢惈鍕煟鎼淬値娼愭繛鍙夊灴瀹曪繝宕橀懠顒佹闂佸憡顨堥崐锝夋偄閸忓皷鎷归梺褰掑亰閸犳艾鈻旈崸妤佲拻闁稿本鐟х粣鏃€绻涙担鍐叉处閸嬪鏌涢埄鍐槈缂佺姷濞€楠炴牕菐椤掆偓閻忣亪鏌涘▎蹇曠闁靛洤瀚伴獮鎺楀幢濡炴儳顥氶梻鍌欑閻ゅ洭锝炴径鎰瀭闁秆勵殔閺勩儵鏌曟径鍡樻珔妤犵偑鍨烘穱濠囨倷閹绘巻鎸冮梺鍛婂灱椤鎹㈠┑瀣仺闂傚牊鍒€閻愮儤鐓曢柕濠忛檮閵囨繈鏌℃担鍓插剶闁哄睙鍥ㄥ殥闁靛牆鎳嶅▽顏呯箾閿濆懏鎼愰柨鏇ㄤ簼娣囧﹪宕奸弴鐐茬獩濡炪倖鏌ㄩ崥瀣敂閿熺姵鈷掑ù锝呮嚈瑜版帩鏁勯柛娑欐綑绾惧綊鏌涢敂璇插箺鐎规洖寮剁换娑㈠箣濞嗗繒浠煎Δ鐘靛亼閸ㄧ儤绌辨繝鍥舵晬婵犲灚鍔曞▓顓犵磼閻愵剚绶茬紒澶婄秺瀵鏁愰崱妯哄妳闂侀潧楠忕徊浠嬎夊┑鍡╂富闁靛牆绻愰々顒勬煛娴g瓔鍤欐い鏇悼閹风姴顔忛鍏煎€梻浣稿閸嬫帡宕戦崨鎼晛闁搞儺鍓氶埛鎺懨归敐鍛暈闁哥喓鍋ら弻鐔煎箹娴h櫣鏆悗瑙勬礈婢ф骞嗛弮鍫氣偓锕傚箣閻愬瓨鐝ㄩ梻鍌欑劍鐎笛呮崲閸岀倛鍥ㄧ鐎n亝鐎梺绯曞墲閵囨粓鍩€椤掍礁绗掓い顐g箞椤㈡绻濋崒姘兼浆闂傚倷鐒﹀鍧楀储娴犲鈧啴宕卞▎鎰簥濠电偞鍨崹鍦不婵犳碍鐓涘璺侯儏閻忊晠鏌涢弬鎯у祮婵﹨娅g划娆忊枎閹冨闂備礁婀遍幊鎾趁洪鐑嗗殨濠电姵纰嶉弲鏌ユ煕濞戝彉绨兼い顐㈢Т閳规垿鎮欓崣澶樻!闂佸憡姊瑰ú婊勭珶閺囥垹绠柤鎭掑劗閹锋椽姊洪崨濠勭畵閻庢凹鍘奸敃銏ゅ箥椤斿墽锛滈柣搴秵閸嬪嫰鎮橀幘顔界厱闁冲搫鍟禒杈殽閻愬樊鍎旈柡浣稿暣閸┾偓妞ゆ巻鍋撴い鏂跨箰閳规垿宕堕妷銈囩泿闂備礁鎼ú銊╁磻閻愬搫闂繛宸簼閻撳啴鎮归崶顏嶅殝闁告梻鍠撶槐鎺撴綇閵婏箑纾抽悗瑙勬礃鐢帡鍩㈡惔銊ョ婵犻潧妫悗鏉戔攽閿涘嫬浜奸柛濠冨灴瀹曟繂鐣濋崟顐ょ枃濠殿喗銇涢崑鎾搭殽閻愬弶顥滈柣锝嗙箞瀹曠喖顢曢妶蹇曞簥闂傚倷鑳剁划顖炲礉濞嗗繄缂氱憸蹇曞垝婵犲洦鏅濋柛灞剧〒閸樼敻姊虹粙璺ㄧ闁稿鍔欏鍐差潨閳ь剟寮诲☉銏犳閻犳亽鍔庨崝顖炴⒑鐠団€虫灓闁稿鍊曢悾鐤亹閹烘繃鏅濋梺缁樓规禍顒勬儎鎼淬劍鈷掑ù锝呮啞鐠愶繝鏌涙惔娑樷偓婵嗙暦瑜版帗鍋ㄩ柛鎾冲级閺呮粓姊洪崘鍙夋儓闁瑰啿绻樺畷鎰板垂椤愶絽寮垮┑顔筋殔濡鏅剁紒妯圭箚闁圭粯甯炵粔娲煛鐏炵偓绀嬬€规洘鍎奸ˇ鍙夈亜韫囷絽骞橀柍褜鍓氶鏍窗閺囩姴鍨濇繛鍡樺姃缁诲棙鎱ㄥ┑鍡欑劸婵℃彃銈稿娲閳哄啰銈烽梺绋块绾绢厼危閹版澘绠婚悗娑櫭鎾剁磽娴e湱鈽夋い鎴濇噹閳绘捇顢橀悙鈺傛杸闂佸疇妫勫Λ妤佺濠靛牏纾奸悹鍥皺婢ф洘銇勯弴顏嗙ɑ缂佺粯绻傞~婵嬵敇閻愭壆鐩庣紓鍌欒兌閸嬫挻鍒婇懞銉d粓闁归棿绀侀悿楣冩煥濠靛棭妲归柛瀣у墲缁绘繃绻濋崒姘闁轰礁鐗撳铏规嫚閳ヨ櫕鐏嶉梺鎸庢磸閸ㄤ粙鐛繝鍥ㄥ亹婵炶尙绮弲銏ゆ⒑缁嬫寧婀扮紒顕嗙悼濡叉劙寮婚妷锔规嫼闂佸憡绻傜€氬嘲危閹间焦鐓熸俊銈傚亾閻庢碍婢橀悾宄扳攽閸ャ劌鍔呴梺鎸庣箓濞诧絿绮径鎰拺缂備焦锚婵鏌涙惔娑樷偓婵嬪箖閳ユ枼妲堥柕蹇娾偓鏂ュ亾閸洘鐓熼柟閭﹀灡绾墽鎮鑸碘拺闁告縿鍎辨牎闂佹寧娲忛崹钘夘嚕婵犳艾鐒洪柛鎰ㄦ櫅椤庢捇姊洪懡銈呮瀾婵犮垺锕㈤敐鐐哄箳濡や礁鈧敻鎮峰▎蹇擃仾缂佲偓閸儲鐓曢柣妯虹-婢х敻鏌曢崱鏇狀槮妞ゎ偅绮撻崺鈧い鎺戝缁犳牠鏌嶉崫鍕櫤闁诡垳鍋為妵鍕箛閳轰讲鍋撳┑瀣濠电姵纰嶉埛鎺楁煕鐏炴崘澹橀柍褜鍓欓崲鏌ユ箒闂佹悶鍎滈崨顔筋啎闂備礁澹婇悡鍫ュ磻閸涙潙鐭楅煫鍥ㄧ⊕閻撴瑩鏌熼娑欑凡鐞氭岸姊洪幎鑺ユ暠婵﹤顭烽崺鈧い鎺嗗亾缂佺姴绉瑰畷鏇㈡焼瀹撱儱娲、娑㈡倷閹绘帞鈧參姊虹粙璺ㄧ伇闁稿鍋ら幃锟犲閳ヨ尙绠氬銈嗙墬缁矂鎯冮幋鐘电<閺夊牄鍔岄崫娲煛鐏炶濡奸柍瑙勫灴瀹曢亶鍩¢崒鍌﹀缁辨挻鎷呴幓鎺嶅闂佽鍑界紞鍡涘磻娴e湱顩叉繝濠傜墛閻撴稓鈧箍鍎遍崯顐d繆閸ф鐓冮柦妯侯樈濡插湱绱掔紒妯兼创鐎规洖銈搁幃銏ゆ惞閸︻厼甯ㄥ┑鐘愁問閸犳牠鏁冮妸銉㈡瀺闁挎繂鎳夊Σ鍫ユ煟閵忊懚鐟邦啅濠靛洢浜滈柡鍌涘劤鐎氬酣鏌嶈閸撴岸宕濋弴鈶┾偓鏃堝礃椤斿槈褔骞栫划鍏夊亾閼碱剙鍤┑鐘垫暩閸嬬姷浜稿▎鎾崇獥闁哄诞鍛濠电偛妯婃禍婊堟倿閸偁浜滈柟鍝勭Ч濡惧嘲霉濠婂嫮鐭掗柡宀€鍠栧畷顐﹀礋椤掑顥e┑鐐茬摠缁挾绮婚弽褜娼栨繛宸簻缁犱即骞栧ǎ顒€鐏柍瑙勭⊕缁绘繄鍠婂Ο宄颁壕闁惧浚鍋呴幃娆撴煕濡ゅ懍鎲鹃柡宀€鍠栭幃褔宕奸悢鍝勫殥缂傚倷绶¢崑鍕矓瑜版帒钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡樺窛闁伙絿鍘ч—鍐Χ閸℃ê闉嶅┑锛勫仩濡嫰锝炶箛娑欐優闁革富鍘鹃敍婊冣攽閳藉棗鐏犻柟纰卞亰閿濈偛鐣濋崟顒€鈧灚绻涢崼婵堜虎婵炲懏锕㈤弻娑㈠箻鐎靛憡鍣梺璇茬箰閸熸潙顫忓ú顏勫窛濠电姳鑳剁换渚€姊洪崫銉バg€光偓缁嬭法鏆﹂柕蹇嬪€曠粻鐟懊归敐鍛辅闁归攱妞藉娲川婵犲啫闉嶉悷婊勬緲閸燁垳绮嬪鍡欘浄閻庯綆鍋嗛崢閬嶆煟鎼搭垳绉靛ù婊勭矒椤㈡棃顢橀姀锛勫幍濡炪倖姊归弸濠氭嚀閸ф鐓涘ù锝嚽归弳锝団偓瑙勬礃鐢帡鍩ユ径濠庢僵妞ゆ巻鍋撶紒鐘靛仱濮婄粯鎷呯粵瀣闂佸憡鍨归弲顐ゆ閻愬搫骞㈡繛鎴炨缚閿涙盯姊虹化鏇炲⒉閽冭鲸绻涢崨顖毿i柕鍥у楠炴帡骞嬪┑鍐ㄤ壕闁煎鍊曢ˉ姘攽閸屾碍鍟為柣鎾存礋閹﹢鎮欓幓鎺嗘寖闂佸疇妫勯ˇ杈╂閹烘埈娓婚柨鏇楀亾婵炶绠撻幃鈥斥枎閹惧鍘介梺缁樻煥閹诧紕娆㈤崣澶堜簻闊浄绲藉顕€鏌″畝鈧崰鏍箖閳╁啯鍎熼柕蹇ョ悼椤㈠懘姊绘担鐑樺殌鐎殿喖鐖奸獮鎰板礃閼碱剚娈鹃梺缁樻煥閸氬藟閸喓绠鹃柟瀵稿仧閹冲嫰鏌e┑鎾剁瘈婵﹤顭峰畷鎺戭潩椤戣棄浜鹃柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欓惌顐簻閻g兘顢楅崟顐㈠亶闁诲海鏁哥涵鍫曞磻閹捐埖鍠嗛柛鏇ㄥ墰椤︺儳绱撻崒姘毙㈤柨鏇ㄤ簻椤曪絾绻濆顒€鑰垮┑掳鍊曢敃銈夊箖閹达附鈷戦柛娑橈梗缁堕亶鏌涢妸褎娅曟俊鍙夊姍閺屽棗顓奸崱娆忓箺闂佺澹堥幓顏嗘閺囥垺鍋╂い鎾卞灪閻撴洟骞栧ǎ顒€濡洪柟鏌ョ畺閹稿﹤鈹戦崰銏犵秺瀹曟宕楅懖鈺冣枏缂備胶鍋撳畷妯衡枖閺囥垹鐒垫い鎺嗗亾缂佺姴绉瑰畷鏇㈡焼瀹撱儱娲︾€佃偐鈧稒锚娴滄姊洪崫鍕偍闁搞劍妞介幃鈥斥槈閵忥紕鍘遍梺闈涱檧缁蹭粙宕濆顑芥斀闁挎稑瀚敮鑸点亜椤撯€冲姷妞ぱ傜窔閺屾盯濡搁妶鍛ギ濠电姭鍋撳〒姘e亾婵﹨娅g槐鎺懳熼幘铏础缂侇喗妫冮、姘跺焵椤掑嫨鈧線寮崼婵嬪敹闂佺粯妫佸▍锝夊汲閵忋倖鈷掗柛灞捐壘閳ь剛鍏橀幃鐐烘晜闁款垰浜剧紒妤佺☉閹冲繐鐣烽弻銉︾厱閻忕偟铏庨崵銈嗙箾閹寸儐鐒搁柡鍐ㄧ墕瀹告繃銇勯幘璺盒㈡鐐村浮濮婄粯鎷呴崨濠冨創濠电偛鐪伴崹钘夌暦閻熸噴娲敂閸涱厺绨甸梻浣告啞閸旓附绂嶅┑瀣獥闁归偊鍘剧弧鈧繝鐢靛Т閸婄粯鏅堕弴鐘电<闁逞屽墴瀹曞ジ鎮㈢粙鍨紟婵犵妲呴崹杈┾偓绗涘懏鍏滃Δ锝呭暞閻撱垽鏌涢幇鍏哥盎闁哄鐩弻锛勪沪閻愵剛顦ㄧ紓浣虹帛缁嬫牠藝閺屻儲鍊垫慨妯哄船閸樺鈧娲橀崹鎸庝繆閹间礁鐓涢柛灞绢殕鐎氳偐绱撻崒姘偓鐑芥倿閿曞倹鏅┑鐘愁問閸犳牕煤閿曞倸桅闁告洦鍨伴崡鎶芥煏婵炲灝鍔氱紒顐㈢Ч濮婅櫣鍖栭弴鐔告緭闂佹悶鍔忓Λ鍕敋閿濆绠绘い鏃傗拡濞煎﹪姊洪悙钘夊姕闁哄銈稿畷鎴﹀箻缂佹ê浠洪梺鍛婄☉閿曪箓宕i崱妞绘斀闁绘ḿ绮☉褎淇婇锝庢疁闁糕斁鍋撳銈嗗笒閸婂綊宕甸埀顒勬⒑鐎圭媭鍤欑紒澶屾嚀閻g兘宕奸弴鐐嶁晠鏌ㄥ┑鍡楊伀闁烩晛閰e缁樼節鎼粹€茬盎濠电偠顕滄俊鍥╁垝濞嗘挸绠涢柡澶庢硶閻ゅ懏淇婇妶蹇曞埌闁哥噥鍨堕幃鈥斥槈閵忊€斥偓鍫曟煟閹扮増娑уù婊冨⒔缁辨帡鍩€椤掑倵鍋撻敐搴″幋闁稿鎸鹃幉鎾礋椤掑偆妲瑰┑鐐茬摠缁矂鎮ユ總绋课ュù锝呭濞笺劑鏌嶈閸撶喖鐛崘顔碱潊闁挎稑瀚板顔界節閵忥絾纭炬い锕侀哺瀵板嫰鏁撻敓锟�

    重磅专题
    往期文章
    最新文章