扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
// BTree.cpp : Defines the entry point for the console application.
/*
作者:成晓旭
时间:2001年7月2日(9:00:00-14:00:00)
内容:完成二叉树的创建、前序遍历、中序遍历、后序遍历
时间:2001年7月2日(14:00:00-16:00:00)
内容:完成二叉树的叶子节点访问,交换左、右孩子
*/
#include "stdafx.h"
#include "stdlib.h"
#define MAX_NODE 100
#define NODE_COUNT1 8
#define NODE_COUNT2 15
int TreeValue0[NODE_COUNT1][2] = {{'0',0},{'D',1},{'B',2},{'F',3},{'A',4},{'C',5},{'E',6},{'G',7}};
int TreeValue1[NODE_COUNT1][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7}};
int TreeValue2[NODE_COUNT2][2] = {{'0',0},{'A',1},{'B',2},{'C',3},{'D',4},{'E',5},{'F',6},{'G',7},{'H',8},{'I',9},{'J',10},{'K',11},{'L',12},{'M',13},{'N',14}};
struct BTree
{
int data;
int order;
BTree *lchild;
BTree *rchild;
};
void Swap(int *p1,int *p2)
{
int t;
t = *p1;
*p1 = *p2;
*p2 = t;
}
/*
function CreateBTree()功能:创建一颗二叉树,并返回一个指向其根的指针
*/
BTree *CreateBTree(int data[][2],int n)
{
BTree *Addr[MAX_NODE];
BTree *p,
*head;
int nodeorder,//节点序号
noderoot, //节点的双亲
i;
if(n>MAX_NODE)
{
printf("参数错误!\n");
return(0);
}
for(i=1;i<=n;i++)
{
p = (BTree *)malloc(sizeof(BTree));
if(p==NULL)
{
printf("内存溢出错误!\n");
return(0);
}
else
{
p->data = data[i][0];
p->lchild = NULL;
p->rchild = NULL;
nodeorder = data[i][1];
p->order = nodeorder;
Addr[nodeorder] = p;
if(nodeorder>1)
{
noderoot = nodeorder/2;
if(nodeorder %2 == 0)
Addr[noderoot]->lchild = p;
else
Addr[noderoot]->rchild = p;
}
else
head = p;
printf("BTree[%d] = %c\t",p->order,p->data);
}
//free(p);
}
return(head);
}
/*
function FirstOrderAccess0()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点]的地址进栈;
当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess0(BTree * header)
{
BTree * stack[MAX_NODE];
BTree *p;
int top;
top = 0;
p = header;
do
{
while(p!=NULL)
{
printf("BTree[%d] = %c\t",p->order,p->data);//访问节点P
top = top+1;
stack[top] = p;
p = p->lchild;//继续搜索节点P的左子树
}
if(top!=0)
{
p = stack[top];
top = top-1;
p = p->rchild;//继续搜索节点P的右子树
}
}while((top!=0)||(p!=NULL));
}
/*
function FirstOrderAccess1()功能:实现二叉树的前序遍历
二叉树前序遍历的思想:
从根节点开始,沿左子树一直走到没有左孩子的节点为止,
依次访问所经过的节点,同时所经[节点的非空右孩子]进栈;
当找到没有左孩子的节点时,从栈顶退出该节点的双亲的
右孩子,此时,此节点的左子树已访问完毕;
在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void FirstOrderAccess1(BTree * header)
{
BTree * stack[MAX_NODE];
BTree *p;
int top;
top = 0;
p = header;
do
{
while(p!=NULL)
{
printf("BTree[%d] = %c\t",p->order,p->data);
if(p->rchild!=NULL)
stack[++top] = p->rchild;
p = p->lchild;
}
if(top!=0)
p = stack[top--];
}while((top>0)||(p!=NULL));
}
/*
function MiddleOrderAccess()功能:实现二叉树的中序遍历
二叉树中序遍历的思想:
从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址进栈;
当找到没有左孩子的节点时,从栈顶退出该节点并访问它,
此时,此节点的左子树已访问完毕;
在用上述方法遍历该节点的右子树,如此重复到栈空为止。
*/
void MiddleOrderAccess(BTree * header)
{
BTree * stack[MAX_NODE];
BTree *p;
int top;
top = 0;
p = header;
do
{
while(p!=NULL)
{
stack[++top] = p;//节点P进栈
p = p->lchild; //继续搜索其左子树
}
if(top!=0)
{
p = stack[top--];//节点P出栈
printf("BTree[%d] = %c\t",p->order,p->data);//访问节点P
p = p->rchild;//继续搜索其左子树
}
}while((top!=0)||(p!=NULL));
}
/*
function LastOrderAccess()功能:实现二叉树的后序遍历
二叉树后序遍历的思想:
从根节点开始,沿左子树一直走到没有左孩子的节点为止,
并将所经[节点]的地址第一次进栈;
当找到没有左孩子的节点时,此节点的左子树已访问完毕;
从栈顶退出该节点,判断该节点是否为第一次进栈,如是,再
将所经[节点]的地址第二次进栈,并沿该节点的右子树一直走到
没有右孩子的节点为止,如否,则访问该节点;此时,该节点的
左、右子树都已完全遍历,且令指针p = NULL;
如此重复到栈空为止。
*/
void LastOrderAccess(BTree * header)
{
BTree * stack[MAX_NODE];//节点的指针栈
int count[MAX_NODE];//节点进栈次数数组
BTree *p;
int top;
top = 0;
p = header;
do
{
while(p!=NULL)
{
stack[++top] = p;//节点P首次进栈
count[top] = 0;
p = p->lchild; //继续搜索节点P的左子树
}
p = stack[top--];//节点P出栈
if(count[top+1]==0)
{
stack[++top] = p;//节点P首次进栈
count[top] = 1;
p = p->rchild; //继续搜索节点P的左子树
}
else
{
printf("BTree[%d] = %c\t",p->order,p->data);//访问节点P
p = NULL;
}
}while((top>0));
}
/*
function IsLeafNode()功能:判断给定二叉树的节点是否是叶子节点
*/
int IsLeafNode(BTree *node)
{
if((node->lchild==NULL)&&(node->rchild==NULL))
return(1);
else
return(0);
}
/*
function PrintLeafNode()功能:输出给定二叉树的叶子节点
*/
void PrintLeafNode(BTree *header)
{
BTree * stack[MAX_NODE];//节点的指针栈
BTree *p;
int top;
p = header;
top = 0;
do
{
while(p!=NULL)
{
stack[++top] = p;
p = p->lchild;//继续搜索节点P的左子树
}
if(top!=0)
{
p = stack[top--];
if(IsLeafNode(p))
printf("LNode[%d] = %c\t",p->order,p->data);//访问叶子节点
p = p->rchild;//继续搜索节点P的右子树
}
}while(top>0||p!=NULL);
}
/*
function HasTwoChildNode()功能:判断给定二叉树的节点是否存在两个孩子节点
*/
int HasTwoChildNode(BTree *node)
{
if((node->lchild!=NULL)&&(node->rchild!=NULL))
return(1);
else
return(0);
}
/*
function SwapChildNode()功能:交换给定二叉树的所有节点的左、右孩子
*/
void SwapChildNode(BTree *header)
{
BTree * stack[MAX_NODE];//节点的指针栈
BTree *p;
int top;
p = header;
top = 0;
do
{
while(p!=NULL)
{
stack[++top] = p;
p = p->lchild;//继续搜索节点P的左子树
}
if(top!=0)
{
p = stack[top--];
if(HasTwoChildNode(p))
Swap(&p->lchild->data,&p->rchild->data);//交换节点P的左、右孩子
p = p->rchild;//继续搜索节点P的右子树
}
}while(top>0||p!=NULL);
}
int main(int argc, char* argv[])
{
BTree * TreeHeader;
printf("二叉树创建数据结果:\n");
TreeHeader = CreateBTree(TreeValue1,NODE_COUNT1-1);
//TreeHeader = CreateBTree(TreeValue2,NODE_COUNT2-1);
if (TreeHeader==0)
{
printf("二叉树创建失败!\n");
return(0);
}
else
{
printf("\n二叉树前序遍历结果:\n");
FirstOrderAccess1(TreeHeader);
printf("\n二叉树中序遍历结果:\n");
MiddleOrderAccess(TreeHeader);
printf("\n二叉树后序遍历结果:\n");
LastOrderAccess(TreeHeader);
//printf("\n二叉树的所有叶子节点:\n");
//PrintLeafNode(TreeHeader);
//SwapChildNode(TreeHeader);
//printf("\n二叉树交换孩子的结果:\n");
//MiddleOrderAccess(TreeHeader);
printf("\n程序运行完毕!\n");
return 0;
}
}
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者