有了稳定可靠的基础设施,云计算的应用系统就可以顺利搭建了吗?当然不是,基础设施,只不过是用户向云计算供应商买了一套虚拟的服务器而已。下面的问题是云计算系统的搭建和计算、存储等不同资源应当如何进行编排。这项工作有多么复杂,下面有一个SDNLAB提供的NetDevOps工程师技能图谱,其中所需要了解的技能大家可以参考着来了解一下:
当然,对于公有云用户而言,不需要对上面的技能有太多的掌握,可以通过提交“工单”的方式让公有云提供商来协助用户进行解决,但是提供商有多强的技术解决能力,可否及时对工单进行处理,就再进一步去进行验证了。
对于Bluemix的用户而言,并没有资源编排的问题存在。在Bluemix上用户只需要选择所需要部署的应用并按照Bluemix提供的详细说明一步步进行操作就可以了,所有的底层资源Bluemix会自动替用户进行编排,将用户应用所需要使用的云计算资源自动的编排出来,减少用户对资源编排过多操作。
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。