至顶网软件频道消息:Facebook Inc.今天发布了一个名为Talk the Walk(路在嘴里)的人工智能数据集,目的是帮助计算机在游览纽约市的过程学习如何与人类更自然地互动。
目前人工智能软件的通信能力相当有限。原因在于,人工神经网络是通过分析样本文本得到统计模式学习语言,这种方法不是特别地有效。
Facebook创建 的Talk the Walk数据集能使人工智能模型以更接近人类的方式学习。Facebook研究人员Douwe Kiela和Jason Weston在博文中提到, “要最终通过人类语言理解建立人工智能,一个策略就是用更自然的方式训练这些系统,将语言与特定环境联系起来。”
他们表示,“和婴儿在看到和触摸到东西开始学会这些东西的名字一样,这种方法有时也叫形象化人工智能,这种在系统环境中进行的方法有利于学习,训练不是通过大型文本数据集(如维基百科)进行。”
研究人员利用Talk the Walk可以将纽约市作为学习环境。Talk the Walk数据集含不同街区的地图、每个块360度图片和样本对话,对话是一个人试图将另一个人引导到某个位置。这些文件附有Facebook研究人员创建的“基准线”用法,可以作为人工智能使用这些信息方法的参考。
据Facebook称,Talk the Walk可以创建逼真的训练场景,机器学习模型可以在这样的场景里打磨他们的语言技能。要进行模拟需要两个人工智能程序。一个是可以看到360度照片的“游客”,而另一个是只有地图的“导游”。基本思想是让两个程序相互通信,在交换了足够的细节后弄清楚如何从一个街区去另一个街区。
这不是一件容易的事。根据The Verge网站介绍,Facebook估计,要利用Talk the Walk数据创建能可靠地生成导航指令的人工智能模型可能需要几年的时间。Facebook希望通过该项目开发的新人工智能功能不仅可用于导航,也可用于其他领域。
Kiela和Weston在博文里称,“我们自己的实验搞清了一些本地化和沟通的次要问题,但我们希望其他人可利用这事更好地理解目标导向的对话、导航、视觉感知和其他挑战。”
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。