至顶网软件频道消息:Facebook Inc.今天发布了一个名为Talk the Walk(路在嘴里)的人工智能数据集,目的是帮助计算机在游览纽约市的过程学习如何与人类更自然地互动。
目前人工智能软件的通信能力相当有限。原因在于,人工神经网络是通过分析样本文本得到统计模式学习语言,这种方法不是特别地有效。
Facebook创建 的Talk the Walk数据集能使人工智能模型以更接近人类的方式学习。Facebook研究人员Douwe Kiela和Jason Weston在博文中提到, “要最终通过人类语言理解建立人工智能,一个策略就是用更自然的方式训练这些系统,将语言与特定环境联系起来。”
他们表示,“和婴儿在看到和触摸到东西开始学会这些东西的名字一样,这种方法有时也叫形象化人工智能,这种在系统环境中进行的方法有利于学习,训练不是通过大型文本数据集(如维基百科)进行。”
研究人员利用Talk the Walk可以将纽约市作为学习环境。Talk the Walk数据集含不同街区的地图、每个块360度图片和样本对话,对话是一个人试图将另一个人引导到某个位置。这些文件附有Facebook研究人员创建的“基准线”用法,可以作为人工智能使用这些信息方法的参考。
据Facebook称,Talk the Walk可以创建逼真的训练场景,机器学习模型可以在这样的场景里打磨他们的语言技能。要进行模拟需要两个人工智能程序。一个是可以看到360度照片的“游客”,而另一个是只有地图的“导游”。基本思想是让两个程序相互通信,在交换了足够的细节后弄清楚如何从一个街区去另一个街区。
这不是一件容易的事。根据The Verge网站介绍,Facebook估计,要利用Talk the Walk数据创建能可靠地生成导航指令的人工智能模型可能需要几年的时间。Facebook希望通过该项目开发的新人工智能功能不仅可用于导航,也可用于其他领域。
Kiela和Weston在博文里称,“我们自己的实验搞清了一些本地化和沟通的次要问题,但我们希望其他人可利用这事更好地理解目标导向的对话、导航、视觉感知和其他挑战。”
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。