扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
NUMA(不一致内存访问,Non-Uniform Memory Access)
NUMA 是为提高系统性能添加到 Linux 2.6 内核的另一个主要特性。在支持多处理器的传统模型中(对称多处理,或者说是 SMP),每个处理器对内存和 I/O 有同等的访问权限。对处理器总线的高争夺率成为性能瓶项。NUMA 体系结构可以在不增加处理器总线负载的情况下提高处理器速度。在 NUMA 系统中,每个处理器距某部分内存较近而距其他内存较远。处理器被安排在称为“节点”的较小的区域中。每个节点有其自己的处理器和内存,节点间可以互相通信。处理器访问本地节点的内存要比访问不同节点的内存快。尽量减少节点间通信可以提高系统的性能。
为支持 NUMA 硬件,Linux 内核在多个范围的进行了一系列改进,包括调试器,多路 I/O,一个可以让用户可以了解用到的处理器和内存资源分配的用户级 API,和内部的内核 API 以使内核子系统了解 NUMA 拓扑。NEC Azusa、IBM x440 和 IBM NUMA-Q 是 NUMA 机器的例子。
扩展的设备支持
在 2.6 内核中支持更多类型的设备。2.6 内核还将主识别号的限制从 255 增加到 4095,并且允许每种类型可以有多于 100 万个子设备。这将给高端的企业系统以足够的支持。
线程改进
2.6 内核采用了新的线程库,Native POSIX Thread Library (NPTL)。这个新库基于 1:1 模型,完全符合 POSIX 标准。Red Hat 所作的测试表明,在一个老的 IA-32 双 450MHz PII Xeon 系统上,使用 NPTL 可以在 2.3 秒之内创建和销毁 100,000 个线程 (在任一时刻最多可以同时运行 50 个线程)。
NPTL 为多线程应用程序在 SMP 环境中带来了极大的性能提高。它尤其有益于超重量级的多线程企业级应用程序,例如 Java 应用程序、Web 服务器和应用程序服务器应用程序。
2.6 内核中另一个对线程的改进是,可分配的 PID 数目从 32,000 增加到了 10 亿。这一线程变化改善了在重负载系统中应用程序的启动性能。由于允许的 PID 上限较低,2.4 内核有时会出现应用程序请求的 PID 编号过高的情况。
O(1) 调度程序
0(1) 调度程序于 2002 年被接受并加入到官方的 Linux 2.5 内核树中。0(1) 调度程序通过改善大量进程的吞吐率提高了 Linux 的扩展性和整体上的性能,尤其是在大型的 SMP 上。0(1) 在任务和 CPU 数目巨大时可以很好地扩展,具有很强的“亲合力”,以避免任务在 CPU 之间反复移动。0(1) 调度程序还允许跨 CPU 的负载平衡和 NUMA-aware 负载平衡。
I/O 改进
块 I/O 层
2.6 内核中的块 I/O 层被重写,以提高内核的可扩展性和性能。2.4 中的全局 I/O 请求锁不再使用。在 2.6 中块 I/O 缓冲区(kiobuf)允许 I/O 请求可以比 PAGE_SIZE 大。出现的大部分问题是由对缓冲区头和 kiobuf 的使用引起的,在这个新的层中已经得以处理。完全重写了 I/O 调度程序。对 SCSI 的支持也有了重大的改进。
异步 I/O
异步 I/O 是在 2.6 内核中新出现的。它为 Web 服务器和数据库等企业应用程序的扩展提供了一个途径,而不必求助用于网络连接的复杂的内部池机制。 |
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者