科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网软件频道如何优化关系数据库查询

如何优化关系数据库查询

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

任何关系数据库都有一套解决查询的规则,而各种关系数据库查询的过程稍有所区别,但是基本的操作思想和过程是一致的。

作者:techrepublic.com.com 2007年2月8日

关键字: Database SQL Server

  • 评论
  • 分享微博
  • 分享邮件

在一个关系数据库中提高和优化查询方法。

很多人都将数据库看成神奇的圣人,即能够解决人们提出的各种问题。任何关系数据库都有一套解决查询的规则,而各种关系数据库查询的过程稍有所区别,但是基本的操作思想和过程是一致的。本文将为你介绍查询分析器解决查询的方法和过程。

查询优化的目标

在查看分析器查询的步骤之前,理解查询优化目标相当重要。显然,查询操作的其中一个目标是尽可能地减少使用资源。从数据库的角度看,这就意味着尽可能地减少I/O操作的次数。

在对I/O操作的判断上,查询分析器经常做出错误的结果。而I/O操作次数必须满足磁盘的读取容量。这样从磁盘I/O读取的角度看,必须做出合理的选择条件。

索引

基于表格的索引是关系数据库用于解决查询的重要技术,也是数据库同时预先将数据分类导入到多表格的方式。通过索引中的字段和实际数据存放的指针可以完成以上的过程。

除了集簇索引(Clustered Index),每一索引的使用都以磁盘容量作为代价。集簇索引是真正意义上与磁盘读取和磁盘容量代价无关的方法,因为集簇索引是真正按照顺序将数据存储到表格。

当使用一个索引,数据库引擎必须执行两个数据读取,这两个数据读取是数据库记录所必需的。第一个数据被读取到实际数据指针的索引。第二个数据被读入到指针指定的位置。此时必须通过数据库服务器来查询,所以考虑系统资源消耗是有必要的。这也是查询分析器不使用索引的主要原因。在后面的部分中,即Covering Indices,你将学会不使用这两种读取的方法——然而,在很多时候使用索引即意味着每一记录可以完成两次读取。

统计页

统计页(Statistics page)是SQL Server用于决定是否使用索引时必需的信息。每一索引都有一个信息表,以将表格所有数据的索引关键值分布告诉查询优化器。统计页可用于大致估计从一个查询返回的行数。

查询分析器必须知道返回的行数,由此确定是否值得使用索引方式。如果查询优化器从索引统计页中得知将返回几行,它就会选择使用索引;如果从统计页中得知将返回大数量的行数,索引查询优化器将有可能使用一个表扫描来解决查询。

字段顺序

当使用到索引时,字段顺序(Field order)代表众多字段的顺序。当判断是否使用索引时,服务器必须从第一字段到最后字段扫描。任何与查询无关的字段都将该索引清除掉。

当进行索引安排时,你应该将最经常使用到的查询排列在索引最顶端,不属于查询范围的字段可以使查询优化器忽略整个索引。 

使用WHERE语句

WHERE语句是确定索引的选择语句的重要组成部分。WHERE语句过滤了显示记录的数量,也是查询优化器查找索引值的最容易的方法。WHERE语句的使用方法有很多种,以下为通常使用到的几种形式:

匹配(相等)

WHERE语句最为常用的例子就是一个记录或多个记录的匹配。当你指定一个特定字段等于一个值时,查询优化器将获知它要查询的索引入口,并识别满足查询条件的记录。这就大大地过滤读取记录的数量,从而减少查询所需要的时间。并且,查询分析器将可找到包含与匹配操作有关的字段索引的位置。

大于或小于

虽然匹配和相等是最为普通的选择方式,而WHERE语句中的查询范围要求也是经常见到的。在这种情况下,查询分析器获知大于或者小于指定值的索引范围。通常,查询分析器可从多个独立语句中确定被读取的索引百分含量,并决定是否值得使用索引技术。

函数

在WHERE语句中使用函数可以限制索引查询的范围。查询分析器的查询结果难于确定,尤其在执行非常量字段的时候。所以,使用WHERE语句的函数将尽可能减少查询次数。

使用ORDER BY语句

一旦查询分析器以WHERE语句来判断,它将以ORDER BY语句而开始查询。如果查询优化器找到正确顺序行的相应索引,并且这一索引与WHERE条件相符合,优化器将会直接使用到索引技术。

为了方便使用索引,ORDER BY语句不应该包含不必要的字段。查询分析器不能识别一个字段的表面意思,而ORDER BY语句可实现按照字段来排序。由此,如果你的ORDER BY语句中包括字段,优化器将会找到包含所有这些字段的索引。在ORDER BY语句中列出每一字段将有效地阻止查询优化器使用索引。

详细索引(Covering indices)

以上我提到查询分析器使用索引也会带来负面,所以有时候我们将不使用索引技术,特别是对于已经确定顺序的索引。

比如,如果你从一个用户记录中选择User ID,First Name,LastName以及EmailAddress,你可获得包含所有这些字段的一个索引,然后查询分析器可以直接使用索引并读取数据表。

此时,使用一个双向对照表(cross reference table)将特别有用。你可以在一个方向上使用一个集簇索引,然后在相反方向建立一个带有字段的索引。这样SQL服务器的第一个方向上可以使用物理表查询,而在相反方向上使用到索引技术。

由于长关键字的原因,详细索引需要额外的空间和更多的时间。然而,如果你有一个参考表,详细索引能够有助于查询分析器更好地工作。

帮助查询优化器

当你提交一个查询之后,查询分析器的执行都必须通过很多环节。这些环节将有助于快速地获得结果。然而,通过在查询中指定你所需要的内容和建立正确的索引,即帮助查询优化器的操作,以上过程才能顺利完成。

责任编辑:张琎

查看本文的国际来源

    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章